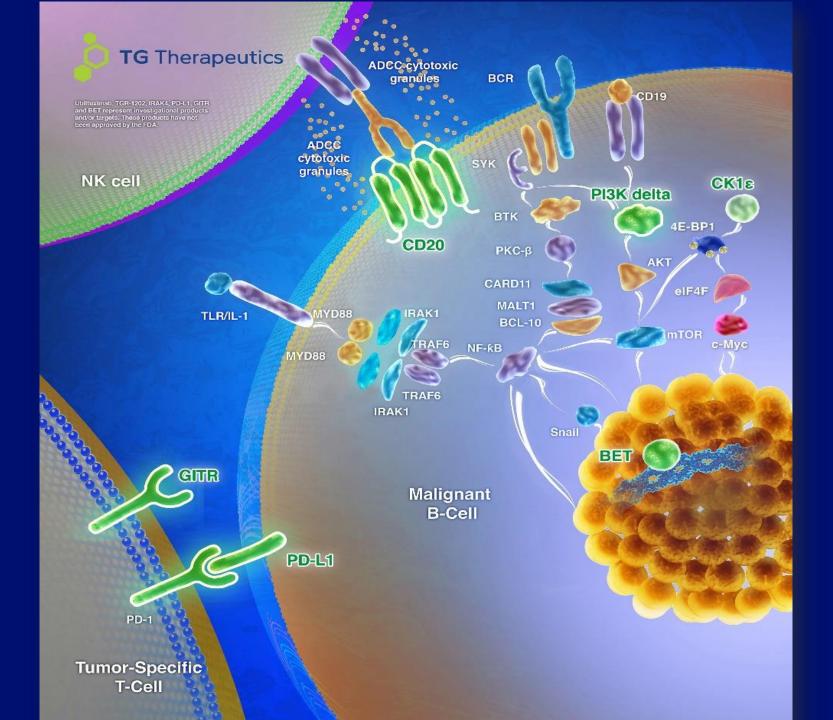


Introduction

Michael S. Weiss
Executive Chairman & CEO

Forward Looking Safe Harbor Statement

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. These statements are often, but not always, made through the use of words or phrases such as "anticipates", "expects", "plans", "believes", "intends", and similar words or phrases. Such statements involve risks and uncertainties that could cause TG Therapeutics' actual results to differ materially from the anticipated results and expectations expressed in these forward-looking statements. These statements are only predictions based on current information and expectations and involve a number of risks and uncertainties. Actual events or results may differ materially from those projected in any of such statements due to various factors, including the risks and uncertainties inherent in clinical trials, drug development, and commercialization. You are cautioned not to place undue reliance on these forward looking statements, which speak only as of the date. these forward-looking statements, which speak only as of the date hereof. All forward-looking statements are qualified in their entirety by this cautionary statement and TG Therapeutics undertakes no obligation to update these statements, except as required by law.


AGENDA

Topic	Presenter
Welcome / Introductions	Michael Weiss, CEO TG Therapeutics
TGR-1202 Differentiation	Owen O'Connor, MD, PhD
Integrated Analysis Safety Current Treatment & Future Plans in the Treatment of Front-line & Rel/Ref CLL	Kathryn Kolibaba, MD
Current Treatment Landscape Rel/Ref FL/MZL/DLBCL Current Use & Future Plans for Novel Agents How does Umbra fit in?	Bruce Cheson, MD
Treatment Challenges and Personal Experience with U2	Kathy Cutter
Questions & Answer Session	
Closing Remarks	Michael Weiss

TG Therapeutics, Inc.

- Biopharmaceutical company focused on B-cell cancers (CLL and NHL)
 & autoimmune-related diseases (MS, RA, Lupus)
- Headquarters: New York, NY
- NASDAQ: TGTX
- Developing portfolio of B-cell targeted agents
- TG-1101 (ublituximab) Novel Glycoengineered, Anti-CD20 monoclonal antibody
 - Enhanced ADCC profile for increased potency, similar to Gazyva® (GA101)
 - Robust activity demonstrated in CLL and NHL
 - GENUINE Phase 3 Registration Trial in CLL positive results announced!
 - ULTIMATE I & II Phase 3 Trials Ongoing in Multiple Sclerosis under SPA
- TGR-1202 (umbralisib) Novel PI3Kδ inhibitor
 - Highly active and well tolerated as monotherapy and in combination treatment
 - Demonstrated best-in-class attributes
 - UNITY- CLL Phase 3 trial under FDA-Special Protocol Assessment (SPA)
 - Full Enrollment reached- October 2017

TGR-1202 Preclinical Differentiation

Owen O'Connor, MD

DECIPHERING THE MECHANISTIC SIMILARITIES AND DIFFERENCES AMONG THE PI3 KINASE INHIBITORS

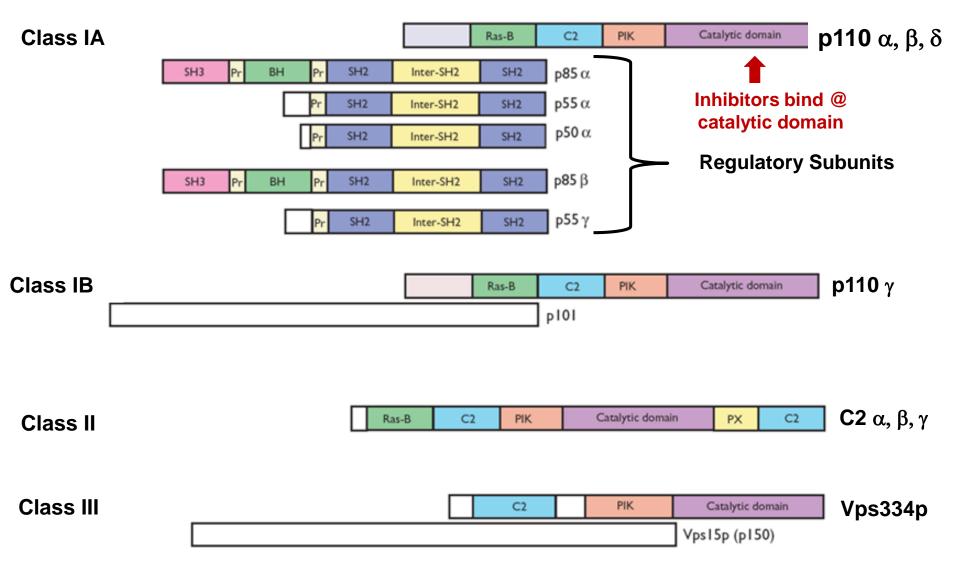
Owen A. O'Connor, M.D., Ph.D.

Founding Director, Center for Lymphoid Malignancies
Professor of Medicine and Developmental Therapeutics
The New York Presbyterian Hospital
Columbia University College of Physicians and Surgeons
New York, N.Y.

American Society of Hematology 2017
Atlanta, GA

DECIPHERING THE MECHANISTIC SIMILARITIES AND DIFFERENCES AMONG THE PI3 KINASE INHIBITORS

OBSERVATIONS AND QUESTIONS

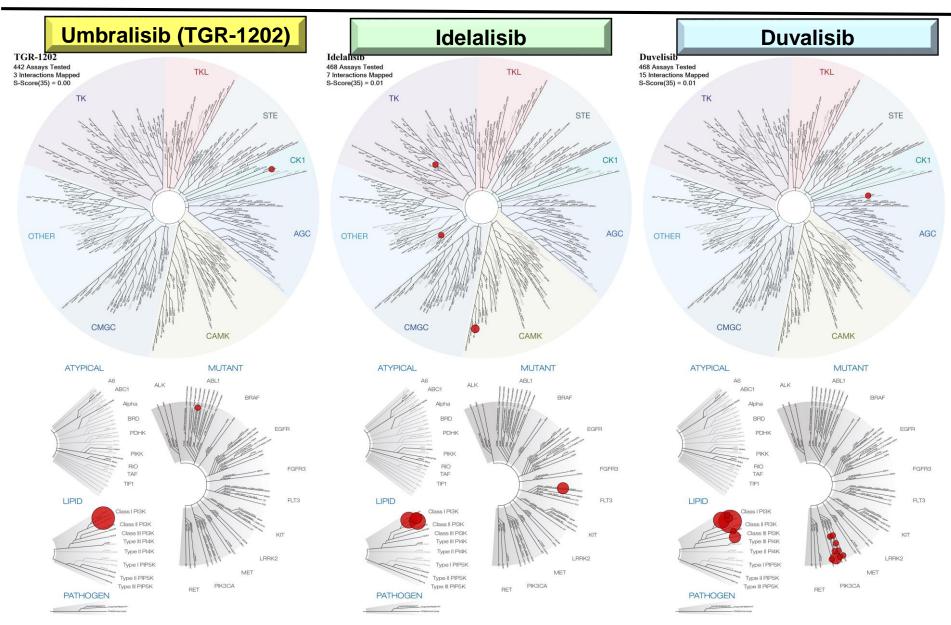

OBSERVATIONS

- The PI3K pathway is undisputedly one of the most important 'driver' pathways across all of cancer – regulating major oncogenes like c-myc, bcl-2 and cyclin D1, among others
- The target in not a simple single protein/gene target. Like the proteasome and HDAC there is enormous family diversity
- Inhibitors of the pathway have important clinical activity in lymphoid malignancies, but that activity is not uniform across all subtypes.
- Some inhibitors have demonstrated unusual adverse events manifest as GVHD-like toxicity and increased infections.

QUESTIONS

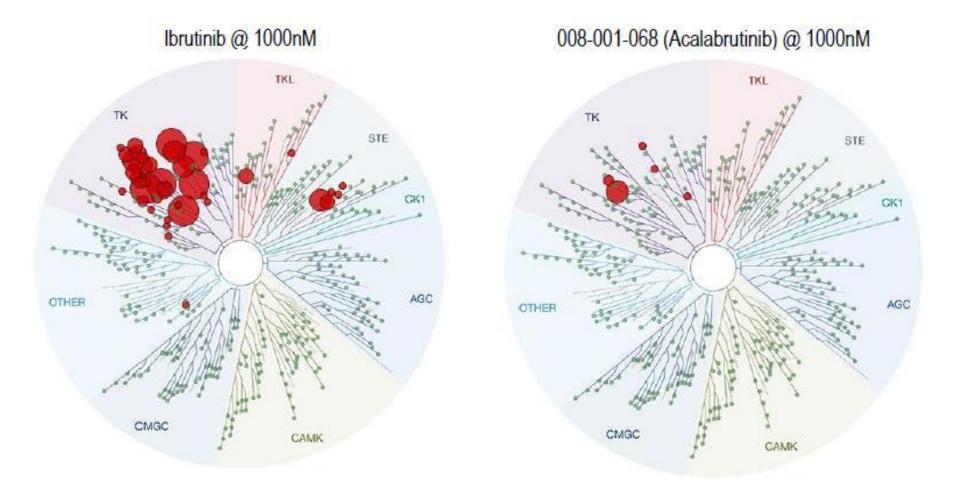
- Are there differences in the on- or off-target affects that might account for differences in toxicity and/or clinical activity? How do we interpret the balance between potency and selectivity?
- Are all agents in the class 'equivalent' with regard to toxicity, efficacy and drug:drug interactions? How might differences in molecular pharmacology provide clues into the deciphering those differences?
- How do we deconvolute the immunologic influences among the compounds? Are they even different?

THE PI3 KINASES EXIST AS COMPLEX HETERODIMERS

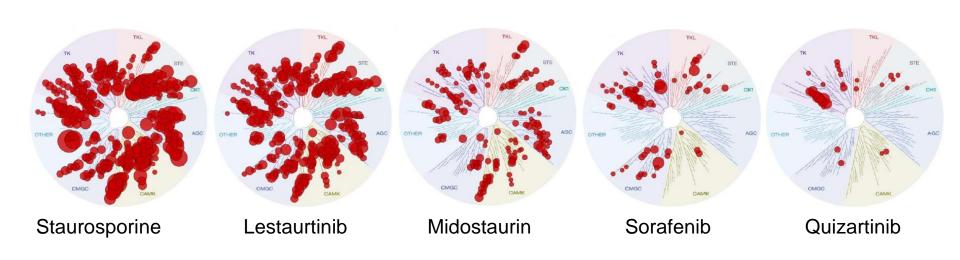

Koyasu Nature Immunology 2003

THE PI3 KINASE INHIBITORS SHARE SIMILARITIES & DIFFERENCES

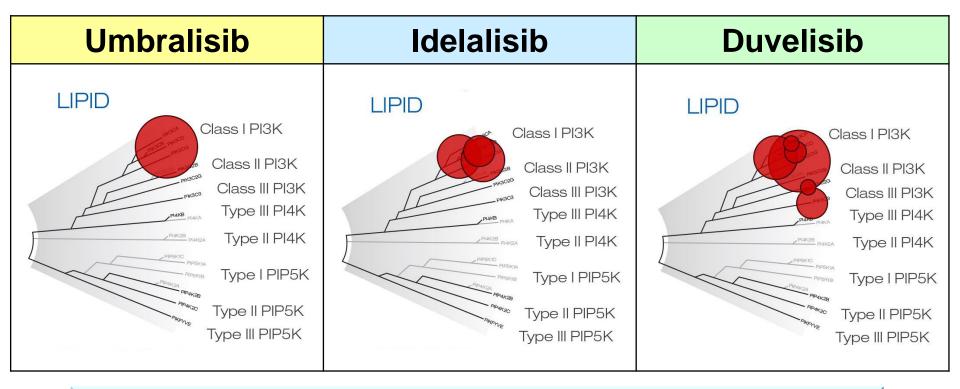
TGR-1202	Idelalisib (GS-1101)	Duvelisib (IPI-145)
F O N N N N N N N N N N N N N N N N N N	F O N NH NH NH NH NH	CI O N NH NH NH NH NH
Delta	Delta	Delta/Gamma
QD	BID	BID


- Similarities in the upper structural motif differences in the lower structural motif
- Subtle pharmacologic and target difference

KINOME SCAN SPECIFICITY OF 3 PI3K


By Comparison, BTK Inhibitors Have Substantially Different Levels of **Selectivity**

Does Anyone Doubt the More Selective Features of Acalabrutinib Don't Account for the Clinical Differences Between These Drugs?


KINOME PROFILES OF FLT3 INHIBITORS:

SELECTIVITY EVOLUTION – DOES IT TRACK WITH IMPROVED CLINICAL APPLICATION?

FDA Approved April 2006 FDA Approved April 2017 Registration Studies underway 2016

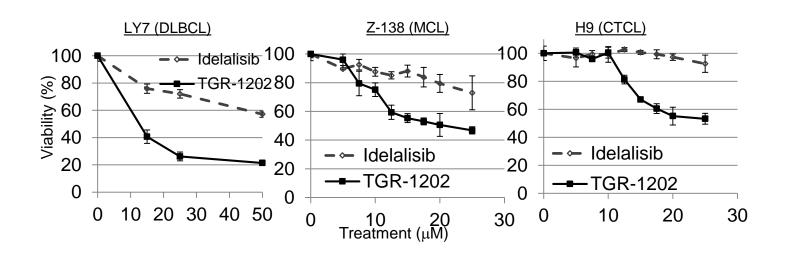
KINOME SCAN FOCUS ON PI3K ONLY — DIRECT COMPARISON OF SPECIFICITY

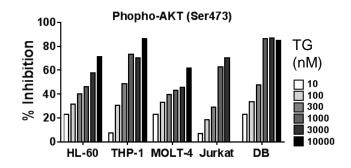
Is it possible these subtle differences explain some of the clinical observations?

STRUCTURES AND DISSOCIATION CONSTANTS (KD) AGAINST CLASS I PI3K ISOFORMS OF UMBRALISIB (TGR-1202), IDELALISIB, AND DUVELISIB

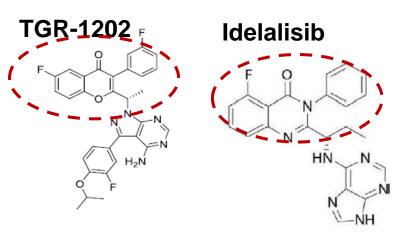
	TGR-1202	ldelalisib	Duvelisib
	F		
Isoform		K _d (nM)	
ΡΙ3Κα	>10,000	600	40
РІЗКβ	>10,000	19	0.89
РІЗКγ	1400	9.1	0.21
ΡΙ3Κδ	6.2	1.2	0.047

COMPARISON OF PHARMACOLOGIC AND PHARMACODYNAMIC FEATURES ACROSS THE PI3K INHIBITORS

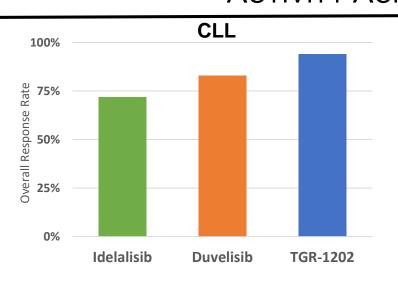

	Umbralisib	Idelalisib	Duvelisib	
Kd PI3K-delta (nM)	6.2 nM	1.2 nM	0.047 nM	
Enzyme IC ₅₀ for Pl3k-δ (nM)	22.23 ¹ nM	8 nM	2.5 ² nM	
Whole Blood Assay IC ₅₀ (nM) FcɛR1 induced CD63 expresssion	67	65	78	
Reported Cmax	~9 µM	~6.5 μM	~3.5 μM	
Reported AUC (ng*h/mL)	91,000	13,800	8,129	

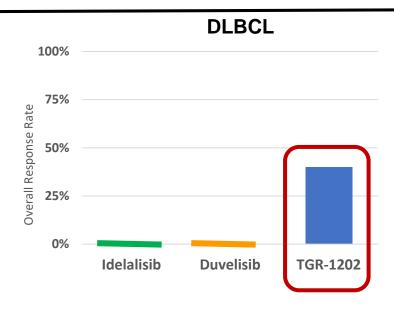

A 3-log fold difference between the IC50 and plasma concentrations

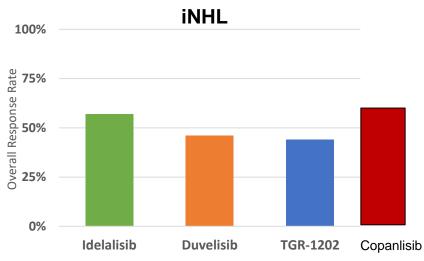
Massive Excess of Drug Concentration Likely Make Differences in Potency


Insignificant

WHILE IDELALISIB, DUVELISIB & TGR-1202 ARE COMPARABLE ACROSS MANY CELL LINES – TGR-1202 IS SUPERIOR IN A FEWWhy?

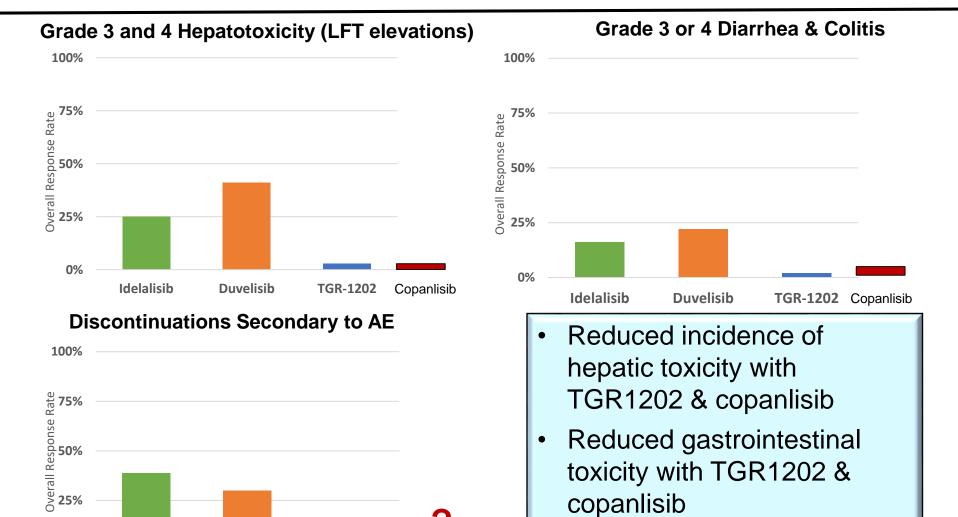



Phospho-AKT Inhibition a Relative Constant Across All Cell Lines Studied



Deng et al., BLOOD, 2016

CLINICALLY THE PI3K INHIBITORS APPEAR TO HAVE COMPARABLE ACTIVITY ACROSS CLL AND INHL



- Comparable activity across
 CLL and iNHL
- More activity seen in DLBCL with Umbralisib
- Small numbers across multiple studies so lots of population variability.

....THOUGH THERE ARE SUBSTANTIAL DIFFERENCES IN TOLERABILITY ACROSS THE PI3K INHIBITORS

Brown et al, iwCLL 2013; O'Brien et al, ASH 2014; O'Connor et al, ASH 2015; Gopal et al, NEJM 2014; Infinity PR, 2016; O'Connor et al, EHA 2016; Jones et al, ASCO 2016; Coutre et al, 2015; Flinn et al, Blood 2014;

Copanlisib

TGR-1202

0%

Idelalisib

Duvelisib

Fewer discontinuations due

to AE with TGR1202

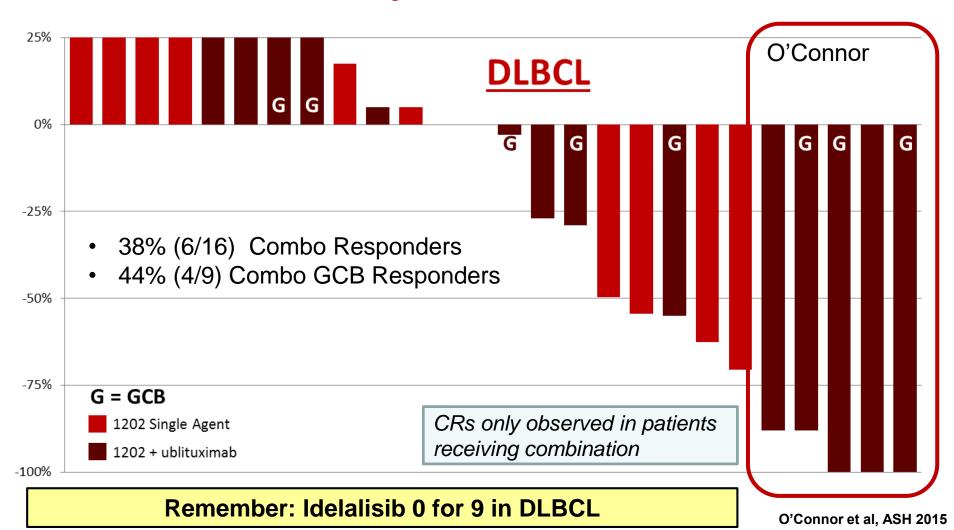
	COPANLISIB (N= 168*)				
ADVERSE REACTION	ALL GRADES	GRADE 3 N (%)	GRADE 4 N (%)		
Hypergylcemia	90 (54%)	56 (33%)	10 (6%)		
Leukopenia	61 (36)	20 (10%)	26 (15%)		
Neutropenia	53 (32%)	16 (10%)	26 (15%)		
Thrombocytopenia	37 (22%)	12 (7%)	2 (1%)		
Reduced strength 61 (36%)		6 (4%)	0		
Diarrhea	60 (36)	8 (5%)	0		
Nausea	43 (26%)	1 (<1%)	0		
Stomatitis	24 (14%)	3 (2%)	0		
Vomiting	21 (13%)	0	0		
Hypertension	59 (35%)	46 (27%)	0		
Lower respiratory tract infections	35 (21%)	20 (12%)	3 (2%)		
Rash	26 (15%)	2 (1%)	1 (<1%)		

Occurring in > 10% of patients

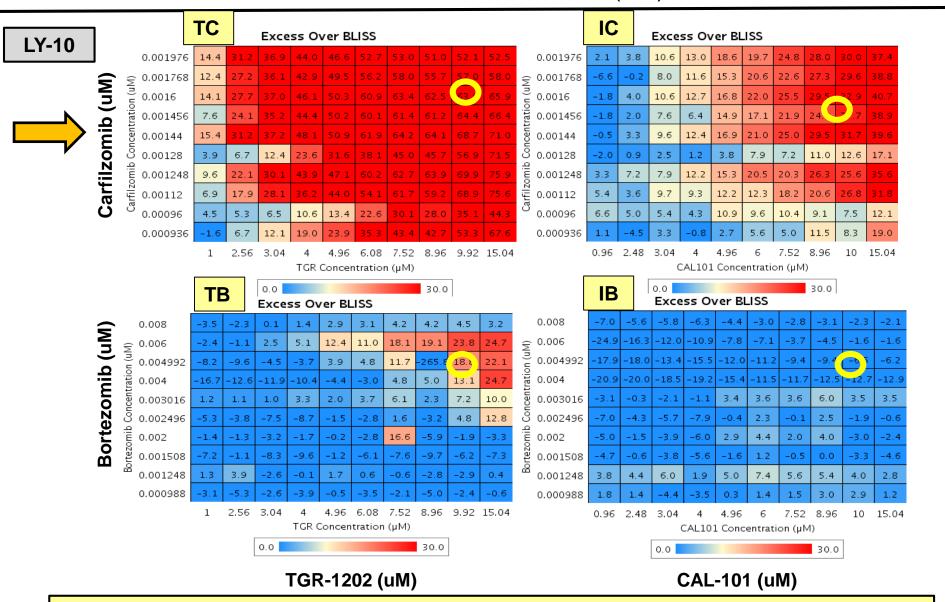
COPANLISIB LABORATORY ABNORMALITIES (20% OF PATIENTS)

Laboratory Parameter	Copanlisib Monotherapy (N = 168)				
	Any Grade N (%)	Grade 3 N (%)	Grade 4 N (%)		
Anemia	130 (78%)	7 (4%)	0		
Lymphopenia	126 (78%)	43 (27%)	4 (2%)		
Leukopenia	118 (71%)	30 (18%)	3 (2%)		
Thrombocytopenia	109 (65%)	11 (7%)	3 (2%)		
Neutropenia	104 (63%)	20 (12%)	25 (15%)		
Hyperglycemia	160 (95%)	72 (43%)	9 (5%)		
Hypertriglyceridemia	74 (58%)	6 (5%)	0		
Hypophosphatemia	72 (44%)	24 (15%)	0		
Hyperuricemia	42 (25%)	40 (24%)	2 (1%)		
Serum lipase increase	34 (21%)	11 (7%)	2 (1%)		

Umbralisib Adverse Events Occurring >10% of Patients: Single Agent Phase 1

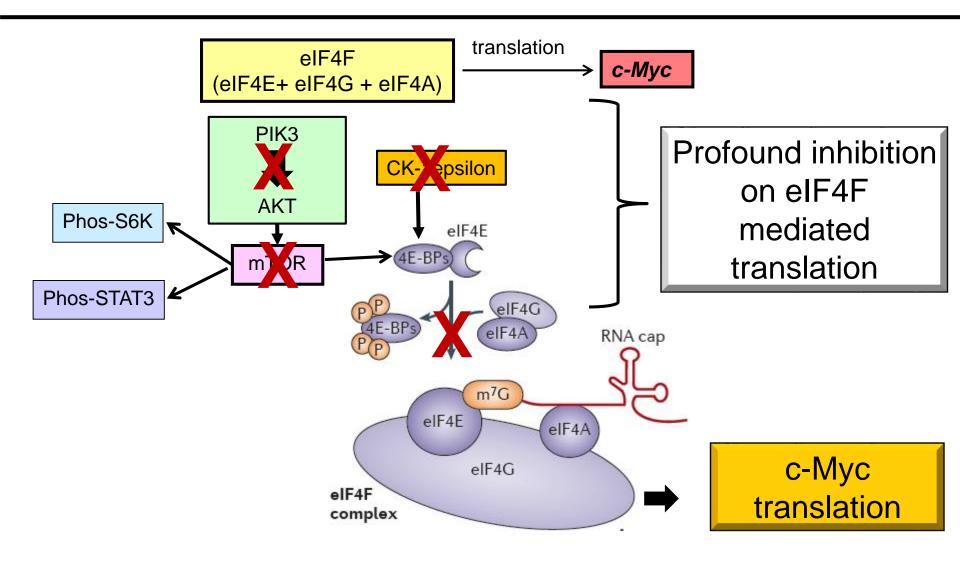

Adverse event, n (%)	All gr	ades	Grades 3 or 4		
Diarrhea	39	43%	3	3%	
Nausea	38	42%	1	1%	
Fatigue	28	31%	3	3%	
Vomiting	25	28%	-	-	
Cough	19	21%	-	-	
Headaches	19	21%	2	2%	
Rash	17	19%	4	4%	
Constipation	14	16%	1	1%	
Decreased Appetite	14	16%	-	-	
Hypokalemia	14	16%	4	4%	
Anemia	13	14%	8	9%	
Neutropenia	13	14%	12	13%	
Arthralgia	12	13%	-	-	
Dyspnea	12	13%	4	4%	
Pyrexia	12	13%	-	-	
Upper Respiratory Tract Infection	12	13%	-	-	
Abdominal Pain	12	13%	-	-	
Dizziness	11	12%	-	-	
Insomnia	11	12%	-	-	
Thrombocytopenia	10	11%	6	7%	
Abdominal Distension	10	11%	-	-	

- Grade 3 or 4 diarrhea
 3%
- Essentially no cases of colitis
- No cases of pneumonitis
- No cases of Grade 5 toxicity
- Infections rare
- Median time on treatment now about
 6 months


Burris et al. 2017. Submitted

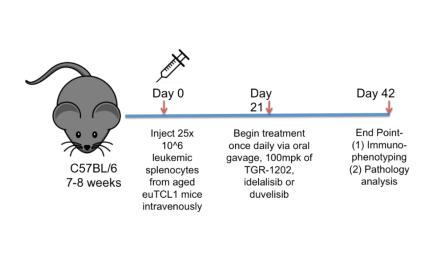
INTEGRATED ANALYSIS TGR-1202 MONOTHERAPY & TGR-1202 + UBLITUXIMAB: DLBCL EFFICACY

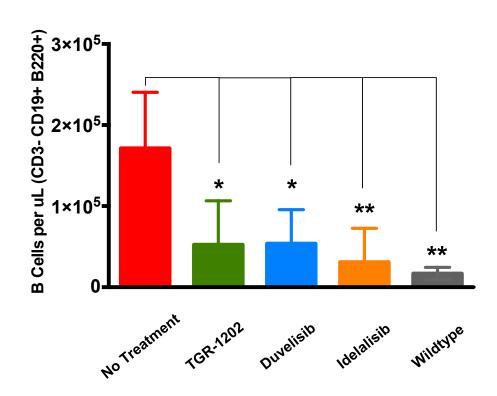
Patients Treated at "Higher Doses" of TGR-1202
Best Percent Change from Baseline in Disease Burden



HTS OF PI3K INHIBITORS PLUS REVEAL **HIGHLY SYNERGISTIC INTERACTIONS**UNIQUE TO THE TGR-1202 - CARFILZOMIB (TC) COMBINATION

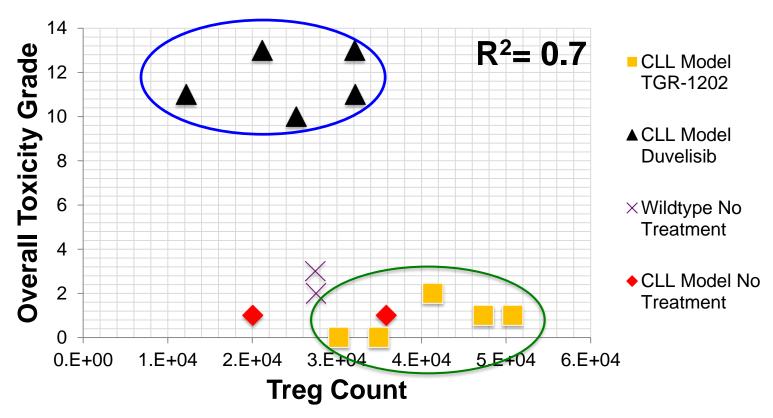
Similar Patterns Across Every Cell Line Evaluated [>10])

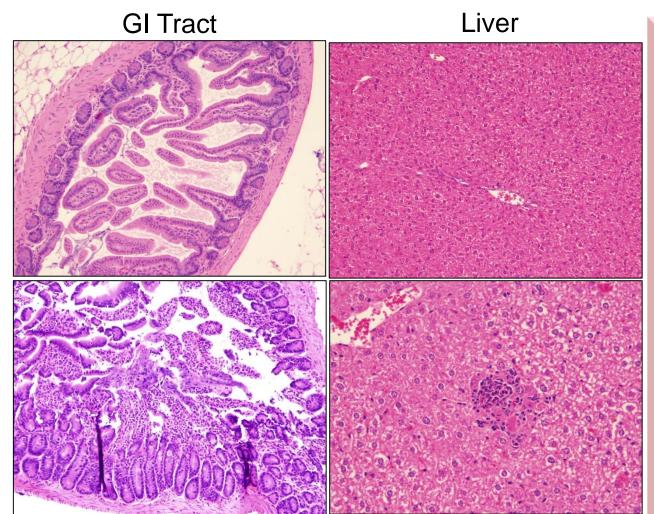

COULD THE COMPLEMENTARY EFFECTS ON EIF4F TRANSLATION BE MEDIATED SIMULTANEOUS CK-1 EPSILON INHIBITION?



WHAT DO ALL THE GEM TELL US?

Author	Model	Relevant Findings
Okkenhaug, et. al Science 2002	KI Delta model	All other organs appeared to be normal, except mice developed a mild inflammatory bowel disease
Jou et. al. Molecular and Cell Biology 2002	KO Delta model	Did not observe an inflammatory bowel disease in mice
Uno, et. al. Gastroenterology November 2010	Double KI Delta – KO IL10	A mild spontaneous colitis was demonstrated in Delta KI mouse. Double KI-KO mice developed severe colitis
Kaneda et. al Nature November 2016	Role of Gamma	Macrophages lacking PI3Ky activity induced pro-inflammatory cytokines such as IL12 with a concomitant reduction in IL10
Okkenhaug, et. al Blood 2007	Double KI/KO Delta –Gamma	Mice lacking <u>PI3Ky and PI3Kδ</u> function developed eosinophilic inflammation in multiple mucosal organs


DIFFERENTIAL REGULATION BY PI3KAI ON T REGS NO REAL DIFFERENCE ON EFFICACY


In vivo efficacy equivalent among cohorts treated with TGR-1202, duvelisib and idelalisib

DIFFERENTIAL REGULATION BY PI3KAI ON T REGS

Correlation analysis – overall toxicity grade was determined after H&E stain using blinded histological analysis of liver and GI tract using known indicators of immune-mediated adverse events.

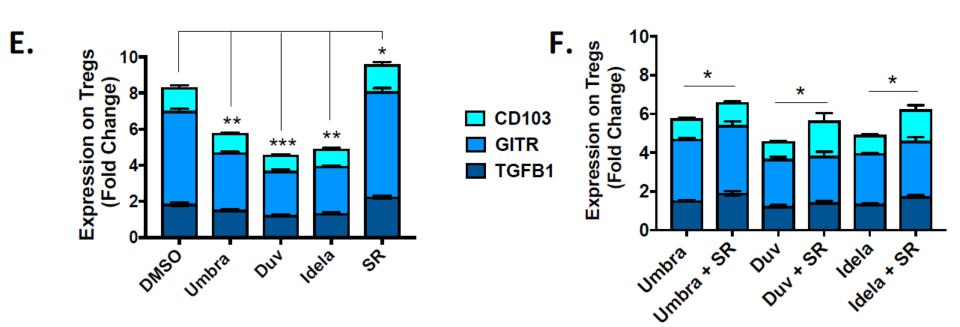
DIFFERENTIAL REGULATION BY PI3KAI ON T REGS

Representative histologic findings.

Top Left: bowel section from TGR-1202 treated mouse with normal appearance.

Top Right: liver section from TGR-1202 treated mouse with normal appearance.

Lower Left: Bowel section from duvelisib treated mouse with inflammation and denuded mucosa indicating GI tract toxicity.


Lower right: Liver section from duvelisib treated mouse with inflammation indicating immune-mediated hepatotoxicity

Maharaj, Pinilla et al iwCLL 2017

TGR-1202

Duvelisib

Effect of CK1e inhibition on murine CLL T cells

- Umbralisib uniquely inhibited CK1e in euTCL1 T cells dose-dependently
- CK1e inhibi1on by umbralisib may offer an explanation for less anti-Treg effects.

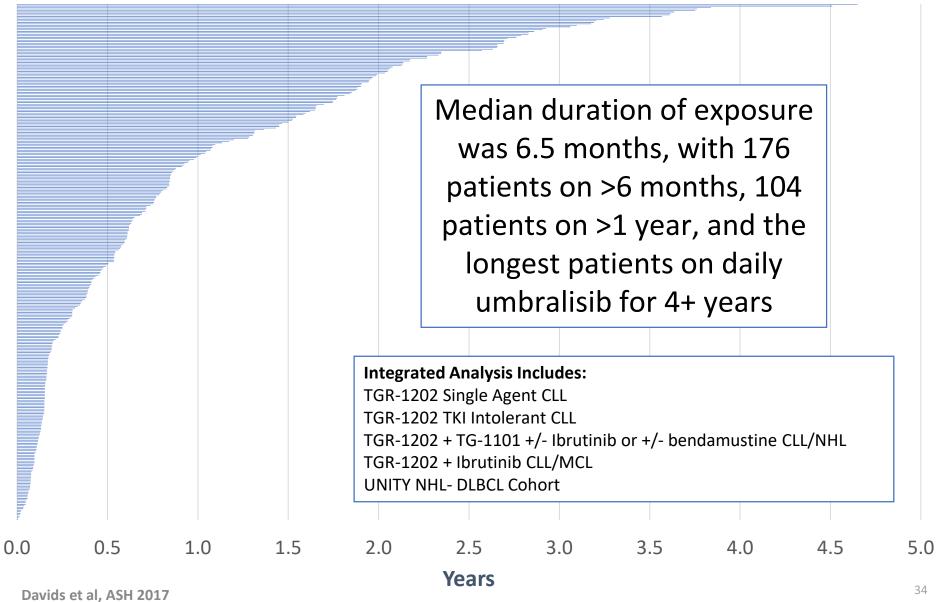
CONCLUSIONS

- ☐ While generally selective, there are differences in the relative selectivity of agents in the class. The marked differences among the agents in the clinic are unlikely <u>explained</u> by differences in potency – all are highly selective potent low nanomolar inhibitors of PI3K δ (+/- γ) Is it possible other off-target (PI3K $+/-\gamma$) effects contribute to produce some of the GVHD like toxicities? Complementary - synergistic - inhibition of other kinases (ex CK-1) may help explain some of the differences in toxicity and efficacy. Drug: drug interactions (ex: with proteasome inhibitors), albeit limited, appear markedly different and requires further work to understand all contributing factors Clinically, there are differences in toxicity - in the preclinical setting there are
- ☐ A significant investment in appreciating differences at the SCIENTIFIC level is required in order to leverage the advantages of the available agents

marked differences on T-regs and cytokine effects

THANK YOU!

TGR-1202 Clinical Safety & CLL Landscape Discussion


Kathryn Kolibaba, MD
Northwest Cancer Specialists/ US Oncology

TGR-1202 Integrated Analysis

Results

Safety

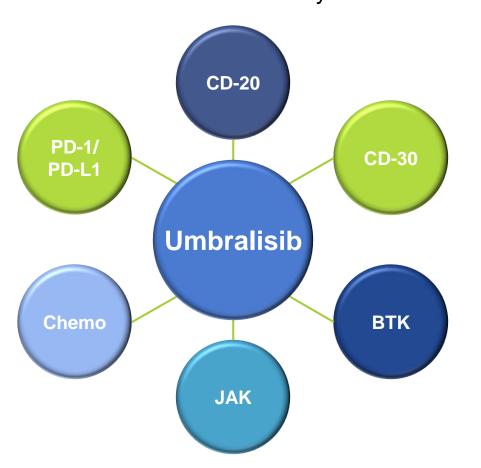
Grade 3/4, All Causality, Adverse Events Occurring in >2% of Patients

	Study 101 Umbra Alone	Study 201 Umbra Alone	Study 105 Umbra + Ibrutinib	Study 103 Umbra + Ubli (U2)	Study 103 U2 + Ibrutinib	Study 103 U2 + Benda	Study 205 U2 or Umbra	TOTAL N=347
	N=90	N=33	N=32	N=75	N=38	N=33	N=46	
Neutropenia	11%	18%	13%	28%	18%	24%	2%	16%
Anemia	8%	3%	9%	4%	3%	6%	4%	5%
Thrombocytopenia	6%	6%	9%	5%	8%	6%	0%	5%
Diarrhea	2%	9%	3%	8%	3%	9%	0%	4%
Pneumonia	4%	0%	0%	8%	11%	0%	2%	4%
Dyspnea	4%	0%	0%	3%	3%	3%	4%	3%
Hypokalemia	4%	3%	3%	3%	0%	9%	0%	3%
Febrile Neutropenia	3%	9%	0%	4%	3%	0%	2%	3%

Davids et al, ASH 2017

Results

Safety


Immune-mediated adverse events were infrequent:

- transaminitis (9%; Gr.3/4 2%);
- colitis (<1.5%; Gr.3/4 <1%);</p>
- pneumonitis (<1.5%; Gr.3/4 <0.5%)</p>

Davids et al, ASH 2017

Umbralisib = Unique Uniquely combinable PI3K delta inhibitor

 Limited CYP450 inhibition and overall tolerability profile allows for highly active combination regimens for a variety of indications in CLL and beyond

Completed & Ongoing Combination Studies

Doublets

TGR-1202 + ublituximab

TGR-1202 + ibrutinib

TGR-1202 + brentuximab vedotin

TGR-1202 + ruxolitinib

Triplets

TGR-1202 + TG-1101 + ibrutinib

TGR-1202 + obinutuzumab + Clb

TGR-1202 + TG-1101 + pembrolizumab

TGR-1202 + TG-1101 + bendamustine

Oncology Treatment Pathways

Most centers have electronic decision tools/ treatment pathways to help recommend treatment options for patients

- GOALS: improve quality of care, and reduce cost of care
 - Adherence to pathways is a mark of high quality care monitored by payors and practices
- PATIENT DATA ENTRY: Diagnosis, biomarkers, stage of disease, number of previous treatments
- DECISION TOOL: provides recommended treatment options based on patient characteristics
 - NCCN guidelines for approved drugs
 - Ongoing clinical trials

CLL Landscape

	CLL PROJECTED TREATMENT LANDSCAPE						
Front-Line	FCR/ BR	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Acala + Gazyva	Venetoclax + Gazyva	Gazyva + CHL	
Relapsed/ Refractory	BR + Idela R + Idela	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Ibrutinib + TG- 1101 (GENUINE)	Venetoclax or Venetoclax + Rituxan		

FCR: Fludarabine Cyclophosphamide Rituxan; BR: Bendamustine Rituxan; Idela: Idelalisib; R:Rituxan; CHL: Chlorambucil

Ibrutinib Discontinuation

Reason for ibrutinib Discontinuation	Ibrutinib in front line		Ibrutinib in Relapse		
	Commercial Use (%) n=10	Clinical Trial (%) n=9	Commercial Use (%) n=200	Clinical Trial (%) n=31	
Toxicity	50.0	77.7	52.5	38.7	
CLL progression	10.0	22.2	19.0	35.5	
Other/unrelated death	10.0	0.0	12.0	12.9	
Physician or patient preference	20.0	0.0	6.0	9.7	
RT DLBCL	0.0	0.0	4.5	0.0	
Stem cell transplantation/ CAR T-cell	0.0	0.0	3.5	3.2	
Financial concerns	0.0	0.0	1.0	0.0	
Secondary malignancy	10	0.0	1.0	0.0	
RT Hodgkin lymphoma	0.0	0.0	0.5	0.0	

Most Common Ibrutinib Related Toxicity

Most common ibrutinib related toxicities as reasons for discontinuation			
Relapsed CLL (%)	Front-line CLL (%)		
Atrial fibrillation (12.3)			
Infection (10.7)	Arthralgia (41.6)		
Pneumonitis (9.9)	Atrial fibrillation (25)		
Bleeding (9)	Rash (16)		
Diarrhea (6.6)			

Median times to ibrutinib discontinuation stratified by toxicity			
Bleeding	8 months		
Diarrhea	7.5 months		
Atrial fibrillation	7 months		
Infection	6 months		
Arthralgia	5 months		
Pneumonitis	4.5 months		
Rash	3.5 months		

- •In the largest reported series on ibrutinb treated CLL patients, 40% of patients have discontinued ibrutinib during this observation period.
- •Ibrutinib intolerance was the most common reason for discontinuation in all settings.

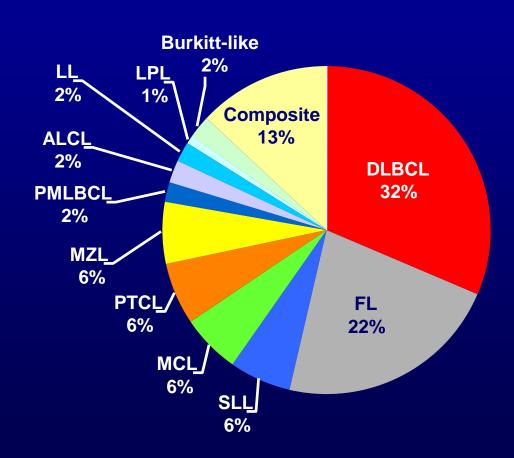
CLL Landscape

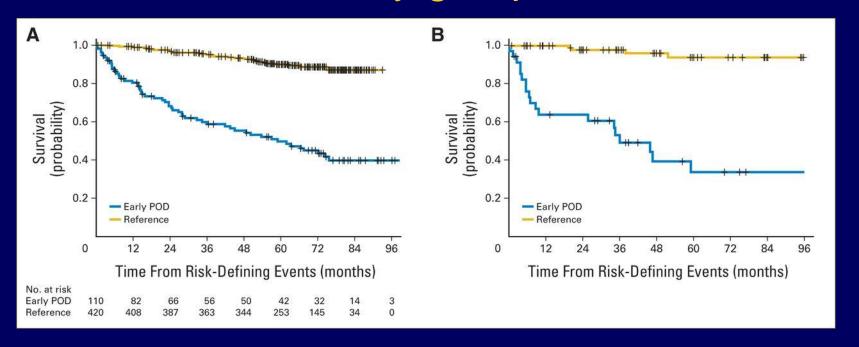
	CLL PROJECTED TREATMENT LANDSCAPE						
Front-Line	FCR/ BR	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Acala + Gazyva	Venetoclax + Gazyva	Gazyva + CHL	
Relapsed/ Refractory	BR + Idela R + Idela	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Ibrutinib + TG- 1101 (GENUINE)	Venetoclax or Venetoclax + Rituxan		

FCR: Fludarabine Cyclophosphamide Rituxan; BR: Bendamustine Rituxan; Idela: Idelalisib; R:Rituxan; CHL: Chlorambucil

TG Therapeutics

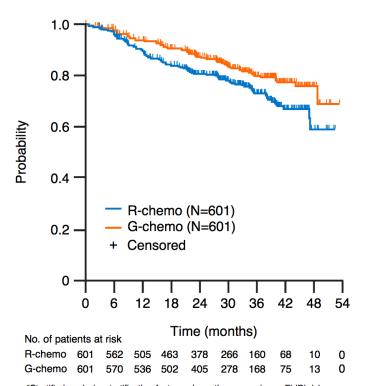
FL, MZL & DLBCLCurrent Treatment Landscape & Future Plans for Novel Agents


Bruce D. Cheson, MD
Georgetown University Hospital
Lombardi Comprehensive Cancer Center



Relative Incidence of NHL Subtypes

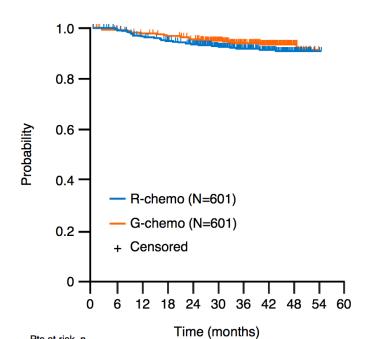
>72,000 cases in US in 2017



OS from a risk-defining event after diagnosis in FL patients who received R-CHOP chemotherapy in the National LymphoCare Study group.

GALLIUM PFS

INV-assessed PFS (FL; primary endpoint)


	R-chemo, n=601	G-chemo, n=601
Pts with event, n (%)	144 (24.0)	101 (16.8)
3-yr PFS,	73.3	80.0
% (95% CI)	(68.8, 77.2)	(75.9, 83.6)
HR (95% CI),	0.66 (0.51, 0.85),	
p-value*	p=0.0012	

Median follow-up: 34.5 months

^{*}Stratified analysis; stratification factors: chemotherapy regimen, FLIPI risk group, geographic region

GALLIUM OS

OS (FL)

	R-chemo, n=601	G-chemo, n=601
Pts with event, n (%)	46 (7.7)	35 (5.8)
3-yr OS,	92.1	94.0
% (95% CI)	(89.5, 94.1)	(91.6, 95.7)
HR (95% CI),	0.75 (0.49, 1.17),	
p-value*	p=0.21	

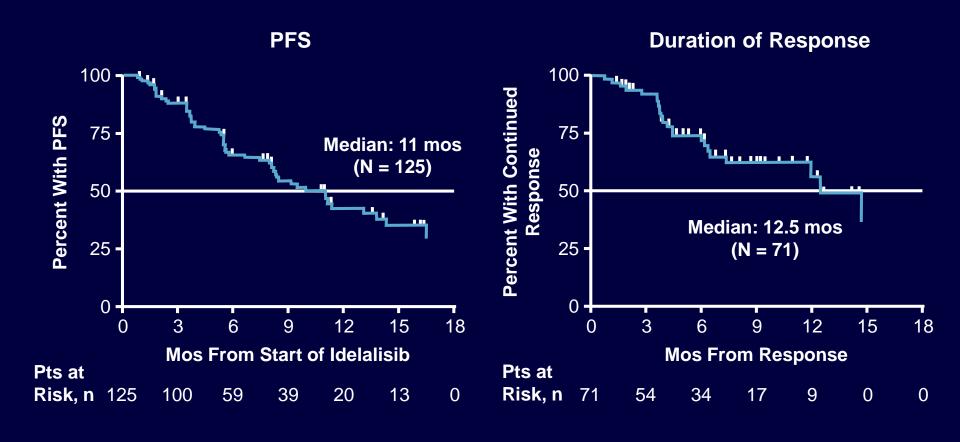
Median follow-up: 34.5 months

Pts at risk, n

R-chemo 601 588 566 549 527 399 265 160 58

G-chemo 601 584 573 563 549 416 271 161 55

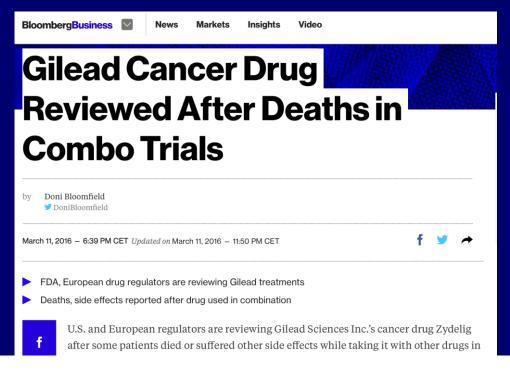
^{*}Stratified analysis; stratification factors: chemotherapy regimen, FLIPI risk group, geographic region


Approved Treatment Options for R/R FL in the US

Agent	Issues
Y ⁹⁰ -ibritumomab tiuxetan (Zevalin)	Eligibility critieria, MDS/AML; no survival benefit
Bendamustine; B-G	BR used upfront
Idelalisib	Toxicities
Copanlisib	Route/schedule
R ²	Relapsed, not refractory; RELEVANCE
Allo BMT	Age of pts, toxicity, reimbursement

Idelalisib Monotherapy in Refractory iNHL (Phase II): Responses

Characteristic	Patients, n (%) (N = 125)
ORR, n (%)	71 (57)
CR	7 (6)
PR	63 (50)
Minor response*	1 (1)
SD	42 (34)
PD	10 (8)
Not evaluated	2 (2)
Time to response, mos $(n = 71)$	
Median (interquartile range)	1.9 (1.8-3.7)

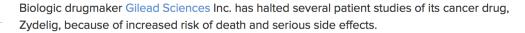

Phase II Study of Idelalisib Monotherapy in Refractory iNHL: PFS and DOR

Idelalisib Monotherapy in Refractory iNHL (Phase II): Adverse Events

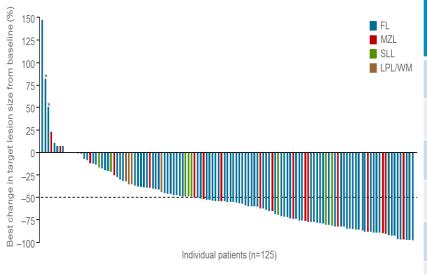
AE, n (%)	Any Grade	Grade ≥3
Diarrhea	54 (43)	16 (13)
Fatigue	37 (30)	2 (2)
Nausea	37 (30)	2 (2)

Transaminases, n (%)	Any Grade	Grade 3/4
ALT elevated	59 (47%)	16 (13%)
AST elevated	44 (35%)	10 (8%)

Gilead Sciences Halts Drug Studies Over Side Effects, Death


By THE ASSOCIATED PRESS •
FOSTER CITY, Calif. — Mar 15, 2016, 5:37 PM ET

ろ SHARES

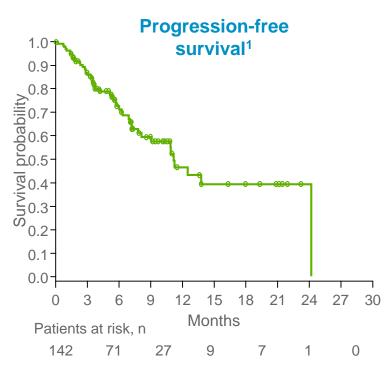


The company told The Associated Press the "adverse events" were spotted during an ongoing review of late-stage testing in patients with chronic lymphocytic leukemia, a blood cancer, and patients with relapsed non-Hodgkin's lymphoma, a cancer of the infection-fighting lymphatic system.

Nathan Kaiser, a spokesman for the Foster City, California, company, wouldn't disclose details, including how many patients died or suffered serious side effects.

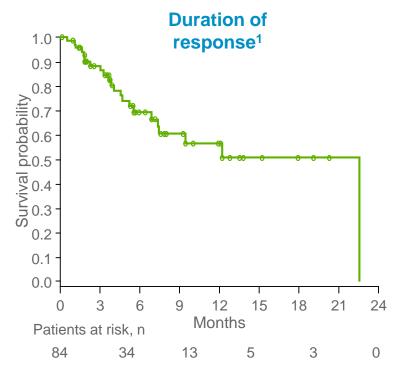
"We are conducting a comprehensive review of all ongoing studies and are consulting with regulatory authorities," Kaiser wrote in an email Tuesday.

Copanlisib Demonstrated Anti-Tumor Efficacy in Patients with Relapsed or Refractory iNHL


	FL (n=104)	MZL (n=23)	SLL (n=8)	LPL/W M (n=6)	Total ^a (N=142)
Best response, n (%)					
Complete response	15 (14%)	2 (9%)	0	0	17 (12%)
Partial response	46 (44%)	14 (61%)	6 (75%)	1 (17%)	67 (47%)
Stable disease	35 (34%)	4 (17%)	1 (13%)	3 (50%)	42 (30%)
Progressive disease	2 (2%)	0	1 (13%)	0	3 (2%)
NE/NA	6 (6%)	3 (13%)	0	2 (33%)	12 (9%)
ORR, n (%)	61 (59%)	16 (70%)	6 (75%)	1 (17%)	84 (59%)
95% CI	49–68	47–87	35–97	0.4-64	51–67

^{*}Patient was assessed by independent review as having stable disease.

Dreyling M et al. J Clin Oncol 2017; doi: 10.1200/JCO.2017.75.4648.


^aOne patient with follicular lymphoma who received treatment was later confirmed by the local investigator to have diffuse large B-cell lymphoma. **CI**, confidence interval; **NA**, not available; **NE**, not evaluable; **ORR**, objective response rate.

Copanlisib Demonstrated Durable Responses in Patients with Relapsed or Refractory iNHL

Median progression-free survival:

- Overall: 11.2 months (95% CI: 8.1–24.0)¹
- **FL:** 11.2 months (95% CI: 7.8–24.2)²

Median duration of response:

- Overall: 22.6 months (range 0–22.6; 95% CI: 7.4–22.6)¹
- Refractory patients: 12.2 months (range 0–22.6; 95% CI: 7.4–22.6)²
- FL: 12.2 months (range 0–22.6; 95% CI: 6.9–22.6)²

^{1.} Dreyling M et al. J Clin Oncol 2017; doi: 10.1200/JCO.2017.75.4648. 2. Dreyling M et al. Presented at: International Conference on Malignant Lymphoma; June 14–17, 2017; Lugano, Switzerland.

Most Common Treatment-Emergent AEs Reported in CHRONOS-1

Treatment-emergent AEs, n (%)	Total (N=142)			
Grade	All	3	4	5
Any treatment-emergent AE	140 (99%)	75 (53%)	38 (27%)	6 (4%)
Hyperglycemia	71 (50%)	48 (34%)	10 (7%)	0
Diarrhea	48 (34%)	7 (5%)	0	0
Fatigue	43 (30%)	3 (2%)	0	0
Hypertension	43 (30%)	34 (24%)	0	0
Neutrophil count decreased	42 (30%)	11 (8%)	23 (16%)	0
Fever	36 (25%)	6 (4%)	0	0
Nausea	33 (23%)	1 (1%)	0	0
Lung infection	30 (21%)	18 (13%)	3 (2%)	2 (1%)
Platelet count decreased	29 (20%)	9 (6%)	1 (1%)	0
Oral mucositis	28 (20%)	4 (3%)	0	0
Laboratory toxicities				
Aspartate aminotransferase increased	39 (28%)	1 (1%)	1 (1%)	0
Alanine aminotransferase increased	32 (23%)	1 (1%)	1 (1%)	0
AEs of special interest				
Pneumonitis (non-infectious)	11 (8%)	2 (1%)	0	0
Colitisa	1 (1%)	0	1 (1%)	0

- Two patients (1%) had Grade 3 pneumonitis and 1 patient had Grade 4 colitis^a (1%)
- Three deaths (2%) were considered drug-related: lung infection, respiratory failure, and a cerebral thromboembolic event (1% each)

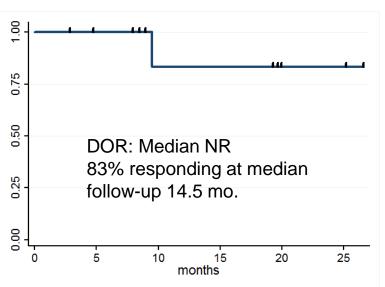
DAWN Study: Primary End Point: IRC-Assessed Clinical Response With Single-Agent Ibrutinib

	All Treated Patients (N = 110)	
Clinical response, n (%)		95% CI
Overall response rate (ORR)	23 (20.9)	13.7-29.7
Complete response (CR)	12 (10.9)	5.8-18.3
Partial response (PR)	11 (10.0)	5.1-17.2
Stable disease (SD)	34 (30.9)	22.5-40.4
Progressive disease (PD)	47 (42.7)	33.3-52.5
Not evaluable/unknown	6 (5.5)	2.0-11.5

Disease control rate (ORR + SD for ≥ 6 months) was 33.6% (37/110)

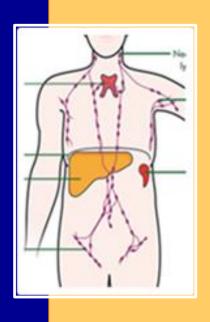
New Targeted Agents

Agent	Target
Obinutuzumab/Ublituximab	CD20
Polatuzumab vedotin Blinatumomab	CD79b CD3/CD19
MOR-208	CD19
Ibrutinib	Btk
Acalabrutinib (ACP-196)	Btk
Idelalisib,	PI3-K
Umbralisib, Copanlisib	PI3-K
Venetoclax (ABT-199) Tazemetostat	Bcl-2 EZH2
Selinexor	XP01 (Nuclear transport)
Lenalidomide	Multiple
Nivolumab/Pembrolizumab	PD-1
Atezolizumab	PDL-1

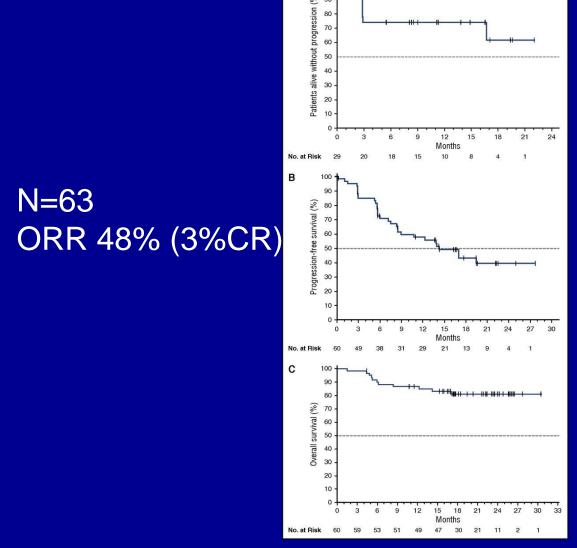

Ongoing "Non-chemo" Combination Trials in FL

Drugs	Sponsor
Obinutuzumab-B/CHOP+Atezolizumab	Genentech
Obinutuzumab+Polatuzumab	Genentech
Obinutuzumab+Atezolizumab+lenalidomide	Genentech
Obinutuzumab+Polatuzumab+lenalidomide	Genentech
Obinutuzumab+Polatuzumab+venetoclax	Genentech
GO29687 (Thiomab)+rituximab	Genentech
Acalabrutinib (ACP-196)+pembrolizumab	Acerta
Acalabrutinib+ACP-319	Acerta
Acalabrutinib+rituximab	Acerta
Ono/GS-4059+idelalisib	Gilead
Ibrutinib+Venetoclax	Georgetown
Ublituximab+ibrutinib	TG Therapeutics
Ublituximab+TGR-1202	TG Therapeutics
Ublituxumab+TGR-1202+ibrutinib	TG Therapeutics
Rituximab +/- copanlisib	Bayer

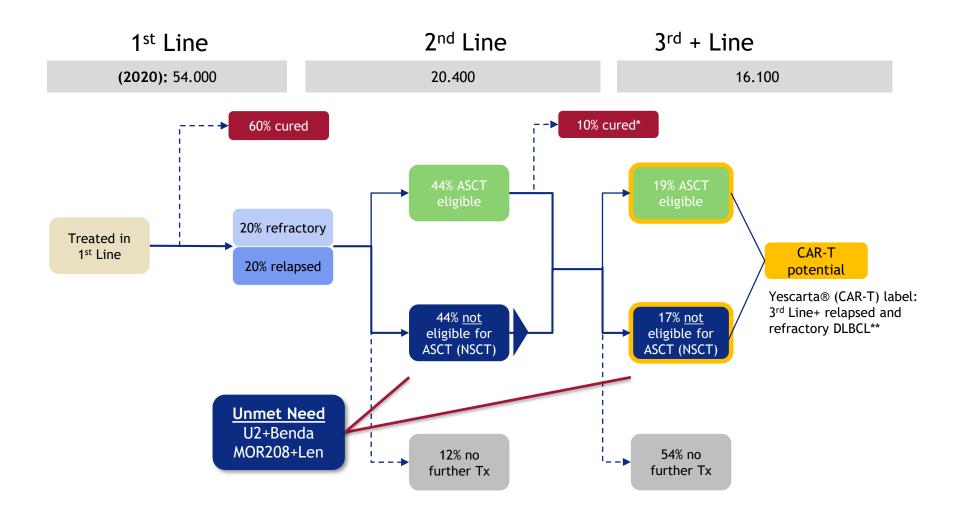
CAR T-cell Efficacy in Follicular Lymphoma (CTL019)


Response at 3 mo. (N = 14)	Best Response (N = 14)
ORR: 79%	ORR: 79%
CR: 7 (50%)	CR: 10 (71%)
PR: 4	PR: 1
PD: 4	PD: 3

Duration of Response (n = 11; CR + PR)


Marginal Zone Treatment

Nodal



- Rituximab + Chemo
 - Bendamustine
 - CHOP
 - Fludarabine
- Ibrutinib

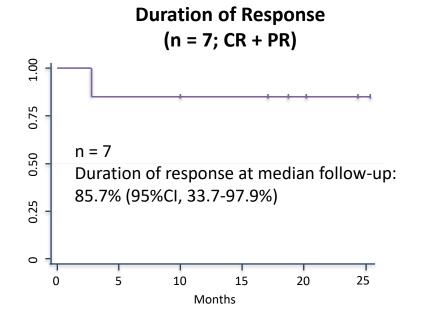
DOR, PFS, and OS with ibrutinib in R/R MZL

Algorithm for DLBCL

Source: Market Research AplusA, *Friedberg et al., 2011; and **Yescarta® SmPC Oct 2017

CAR T-cell therapies in DLBCL

UPENN Single Institution Study

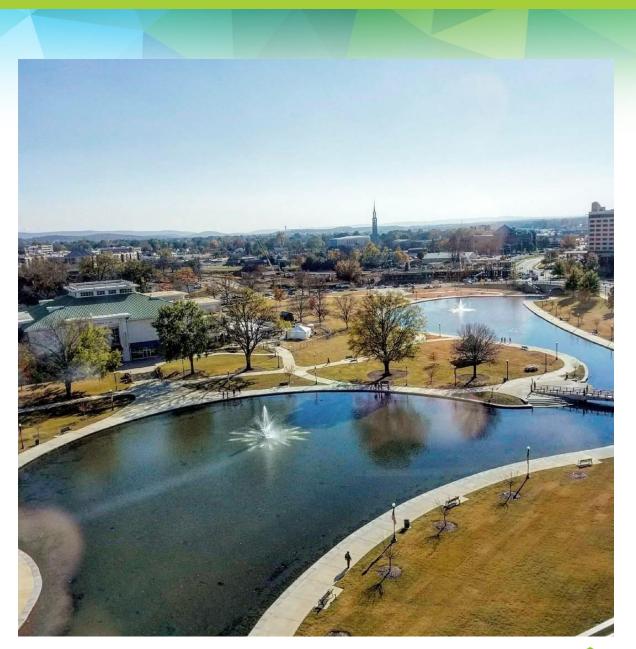

- Results from a single-center, phase 2 study at the University of Pennsylvania showed durable remissions with a single infusion of CTL019 in r/r DLBCL (Cohort A)^{1,2}
 - No patient in CR at 6 months has relapsed (median follow-up, 23.3 months)

Response Rates (N = 15)

	Month 3	Month 6
ORR	7 (47%)	7 (47%)
CR	3 (20%)	6 (40%)
PR	4 (27%)	1 (7%)

CR, complete response; DLBCL, diffuse large B-cell lymphoma; ORR, overall response rate; PR, partial response.

- 1. Schuster SJ, et al. Blood. 2015;126(23):[abstract 183].
- 2. Schuster SJ, et al. Blood. 2016;128(22):[abstract 3026].


TG Therapeutics

Personal Experience

Kathy Cutter, RN, BSN
Clearview Cancer Institute
Huntsville, AL

Experience with Ublituximab and Umbralisib

In the past 4 years at the Clearview Cancer Institute, we have treated over 80 patients on TG protocols:

TG Therapeutics Protocol	Patient Population	Patients Treated
Umbralisib + Ublituximab (+/- ibrutinib or bendamustine)	R/R CLL, iNHL, DLBCL	45
Umbralisib + Gazyva + Chlorambucil	Front line CLL	10
Ublituximab + Lenalidomide	R/R NHL	7
UNITY-CLL	CLL	7
Ublituximab + Ibrutinib	R/R CLL, MCL	5
Ublituximab Single Agent	R/R NHL & CLL	4
GENUINE	CLL	4
UNITY-NHL	iNHL, DLBCL	2
TOTAL		84

Experience with Idelalisib and Obinutuzumab at Clearview Cancer Institute

Idelalisib Experience:

- Idelalisib: Phase 1 single agent extension trial
- Idelalisib: Phase 1 in combination with Rituxan / Bendamustine or Ofatumumab
- Idelalisib: Five Phase 3 randomized trials for CLL and NHL

Gazyva (Obinutuzumab) Experience:

- Phase 1 Gazyva/Bendamustine
- Expanded access Gazyva/Chlorambucil
- Phase 2 Gazyva/Bendamustine

Differences in Ublituximab and Obinutuzumab in Infusion Times and AE's

Ublituximab – Month 1 infusions 3-4 hours

All subsequent infusions administered in **90 minutes**

Obinutuzimab- C1D1 and C1D2 infusion over 4 hours.

All subsequent infusions administered over 3.25 hours.

Grade 3/4 Event	Ublituximab*	Obinutuzumab/ Chlorambucil**
Infusion Reactions	~5%	20%
Neutropenia	28%	46%
Thrombocytopenia	5%	13%
Bleeding	0%	5%

^{*}Combination with umbralisib

^{**}Prescribing Information

It's all About the Quality of Life

Comparison of Common AE's between Umbralisib and Idelalisib

Grade 3/4 Event	Umbralisib*	Idelalisib**
Diarrhea	4%	14%
Neutropenia	16%	25%
Anemia	5%	2%
Thrombocytopenia	5%	6%
Elevated LFT's	2%	18%
Colitis	<1%	14%
Nausea	<2%	1%
Fatigue	<2%	1%
Rash	<2%	4%

^{*}Integrated Analysis Poster ASH 2017

^{**}Prescribing Information

Ublituximab + Umbralisib Case Study: CLL

Relapsed CLL Patient (Initials JSM)

- History 53 year old male
- Disease information Original diagnosis September 1992 requiring treatment.

Prior treatments (n=8)

- #1 Chlorambucil + Prednisone (x 2)
- #3 Fludarabine
- #4 Rituxan (x 2)
- #6 CVP + Rituxan Maintenance
- #7 R-CVP
- #8 Bendamustine Rituxan + Rituxan Maintenance

Case Study CLL (continued)

Treatment start date - Ublituximab + Umbralisib - 9/3/14; ECOG 1

RESULTS

- First Response assessment at 8 weeks = Partial Response
- Last Response assessment as of Oct 2017 = Partial Response
- AE's: 1 Drug Interruption for Grade 3 neutropenia and Grade 2 Influenza (not related) both occurring at the same time from Dec 24 – Dec 30, 2014
 - No events of diarrhea or elevated LFTs observed
- Per Protocol Design in 2014/2015, patients could remain on ublituximab for 1 year and continue umbralisib indefinitely
- As of Dec 2017, patient remains on umbralisib single agent now 3+ years

Ublituximab + Umbralisib Case Study 1

Transformed DLBCL Patient

- History 63 year old Caucasian male; career military. Sniper in the army.
 Hx of multiple gunshot wounds; PTSD; Stroke in 2010 which left him temporarily aphasic.
- Disease information Original diagnosis 11/19/2001- Follicular lymphoma stage 2. Transformed to DLBCL in 2013; site nasopharyngeal mass.

Prior treatments (n=7)

- #1 R-CHOP 12/2001-06/2002 8 cycles
- #2 Rituxan 8/2003 10/2003 8 weekly tx
- #3 Rituxan 6/2005 2 treatments
- #4 Treanda 02/2009 05/2009 6 cycles

Case Study #1 (continued)

- #5 Radiation L inguinal 30 GY 2011
- #6 Treanda 4/2012 7/2012 6 cycles
- #7 ICE 01/2014 2/24/14 3 cycles no response
- The patient was screened 3/24/14
- Treatment start date Ublituximab + Umbralisib 4/14/14

RESULTS

- Original naso-pharangeal mass was 5.7 cm x 3.2 cm. Patient achieved a Complete Response during cycle 5 (8/25/14) and has been in CR since that time (3.5+ years).
- AE's: Gr. 2 IRR, nausea gr 2; neutropenia gr 3; dehydration gr 2; diarrhea gr 2/3; fatigue gr 1

Ublituximab + Umbralisib + Benda Case Study 2

Refractory DLBCL Patient

- History 60 year old female
- History/Disease information 60 yo female, Original diagnosis 11/2010 Aggressive Stage 3 DLBC:

Prior treatments (n=7)

- #1 R-CVAD Remission for 3 years
- #2 R-ICE followed by PBSCT
- #3 Beam Condition to Transplant 3/2015
- Patient Relapses from March 2015 Transplant in October 2015
- Patient starts Ublituximab + TGR-1202 + Benda October 29, 2015
- Baseline Tumor Mass: 3 Target Lesions = 27.68 cm in SPD
- ECOG of 1

Case Study #2 (continued)

RESULTS

- Partial Response (92% reduction) at week 8
- Complete Response by week 20 and continued with CR until October 2016 (12 months later) which 12 month CT showed a new lesion present (progression)
- AE's: Gr. 3/4 neutropenia and thrombocytopenia; Gr. 3 anemia, Gr. 1 rash

As a research nurse, there is nothing more rewarding than to have a patient receive treatment with Ublituximab and Umbralisib, leave your clinic, fly directly to Florida, where he boards his yacht and captain's his boat to the Bahamas!

The good life!

Questions & Answer Session

TG Therapeutics

Concluding Remarks

Michael S. Weiss
Executive Chairman & CEO

