

Introduction

Michael S. Weiss Executive Chairman & CEO

AGENDA

Торіс	Presenter
Welcome / Introductions	Michael Weiss, CEO TG Therapeutics
TGR-1202 Differentiation	Owen O'Connor, MD, PhD
TGR-1202 Safety	Anthony Mato, MD
TGR-1202 Efficacy	Matthew Lunning, DO
Ibrutinib Intolerance	Anthony Mato, MD
CLL & DLBCL Landscape Panel Discussion	Nilanjan Ghosh, MD, PhD Kathryn Kolibaba, MD Matthew Lunning, DO Anthony Mato, MD Owen O'Connor, MD, PhD

Closing Remarks

Michael Weiss

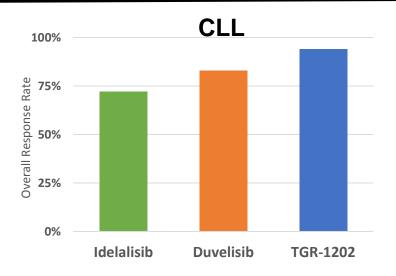
TGR-1202!

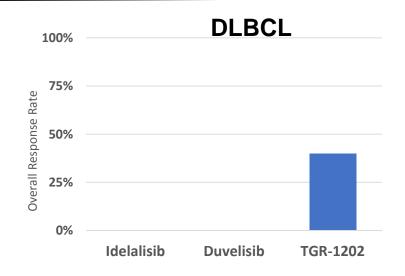
MAKE PI3KS GREAT AGAIN

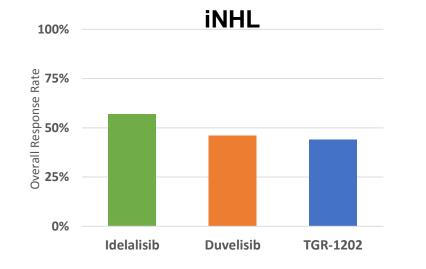
TGR-1202 Preclinical Differentiation

Owen O'Connor, MD

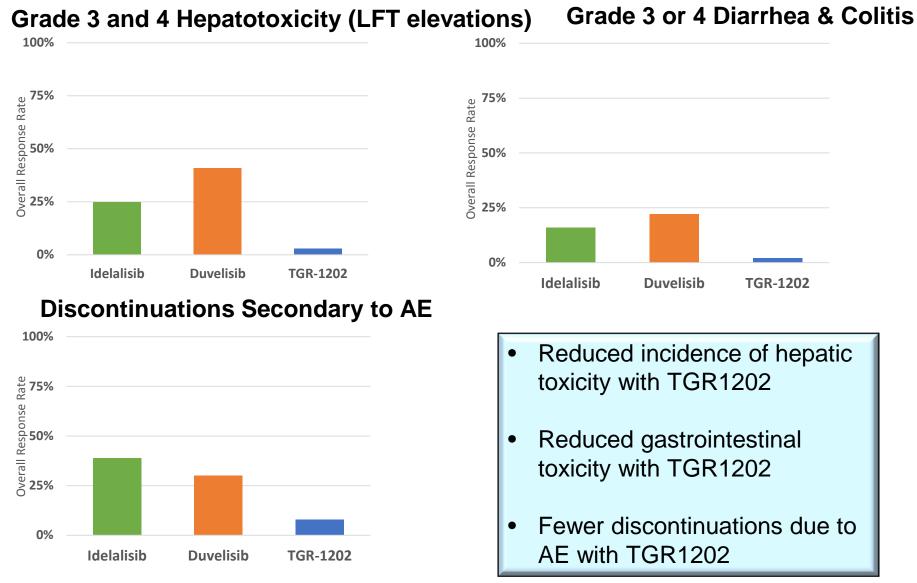
EXPLORING THE DIFFERENCES AMONG THE PI3 KINASE INHIBITORS


Owen A. O'Connor, M.D., Ph.D. Director, Center for Lymphoid Malignancies Professor of Medicine and Developmental Therapeutics The New York Presbyterian Hospital Columbia University College of Physicians and Surgeons New York, N.Y.





COMPARISON OF CLINICAL ACTIVITY FOR PI3K INHIBITORS COMPARABLE ACTIVITY ACROSS CLL AND INHL

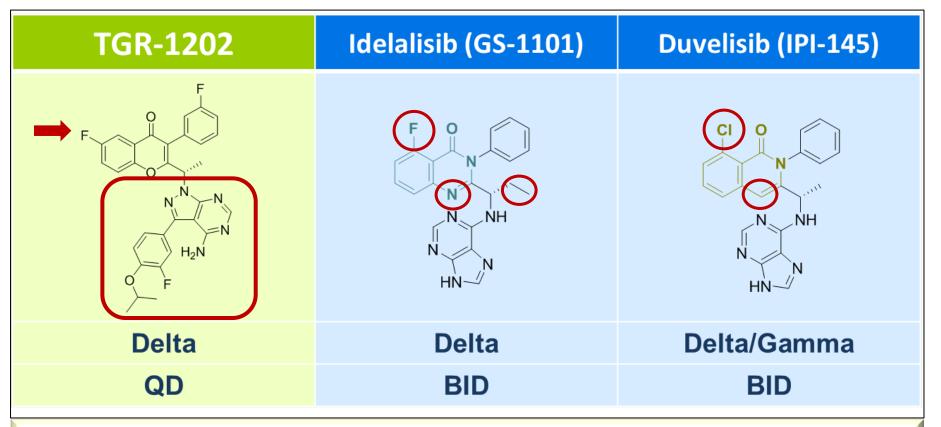


Brown et al, iwCLL 2013Gopal et al, NEJM 2014Westin et al, 2014O'Brien et al, ASH 2014Infinity PR, 2016O'Connor et al, EHA 2016O'Connor et al, ASH 2015O'Connor et al, EHA 2016

- Comparable activity across CLL and iNHL
- More activity seen in DLBCL
- Small numbers across multiple studies so lots of population variability.

COMPARISON OF TOLERABILITY FOR PI3K INHIBITORS APPEARS LESS FOR TGR1202 ACROSS THE BOARD

Brown et al, iwCLL 2013; O'Brien et al, ASH 2014; O'Connor et al, ASH 2015; Gopal et al, NEJM 2014; Infinity PR, 2016; O'Connor et al, EHA 2016; Jones et al, ASCO 2016; Coutre et al, 2015; Flinn et al, Blood 2014;

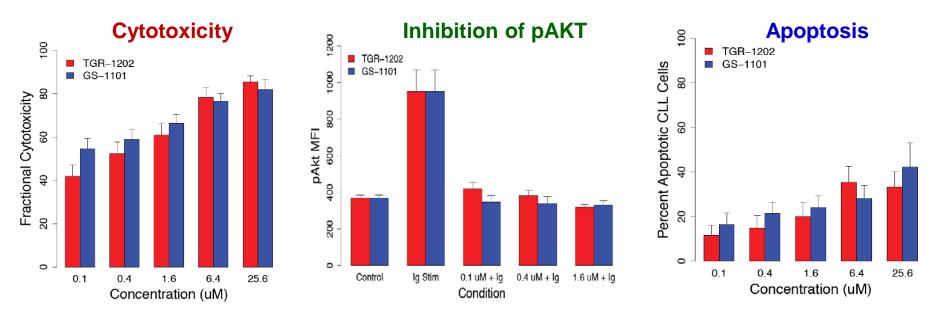

COMPARISON OF PHARMACOLOGIC AND PHARMACODYNAMIC FEATURES ACROSS THE PI3K INHIBITORS

	TGR-1202	Idelalisib	Duvelisib
Enzyme IC ₅₀ for Pl3k-δ (nM)	22.23 ¹	8.5	2.5 ²
Whole Blood Assay IC ₅₀ (nM) FcɛR1 induced CD63 expresssion	66.97	65	78
Reported Cmax	~9 µM	~6.5 μM	~3.5 μM
Reported AUC (ng*h/mL)	91,000	13,800	8,129

A 3-log fold difference between the IC50 and plasma concentrations Massive Excess of Drug Concentration Likely Make Differences in Potency Insignificant

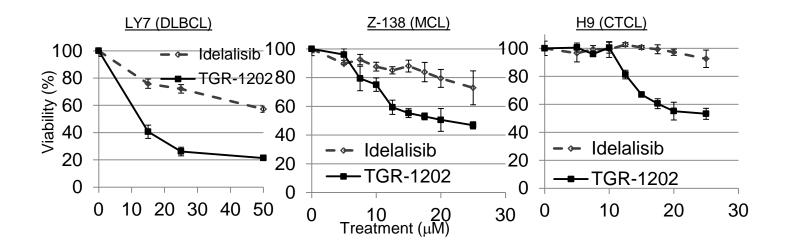
¹Millipore, 100uM ATP ²Assay conducted with 3mM ATP

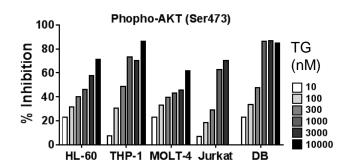
THE PI3 KINASE INHIBITORS SOME SIMILARITIES – SOME DIFFERENCES

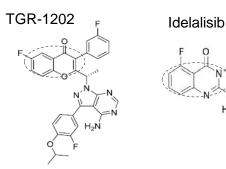


- Similarities in the upper structural motif differences in the low structural motif
- Subtle pharmacologic and target difference

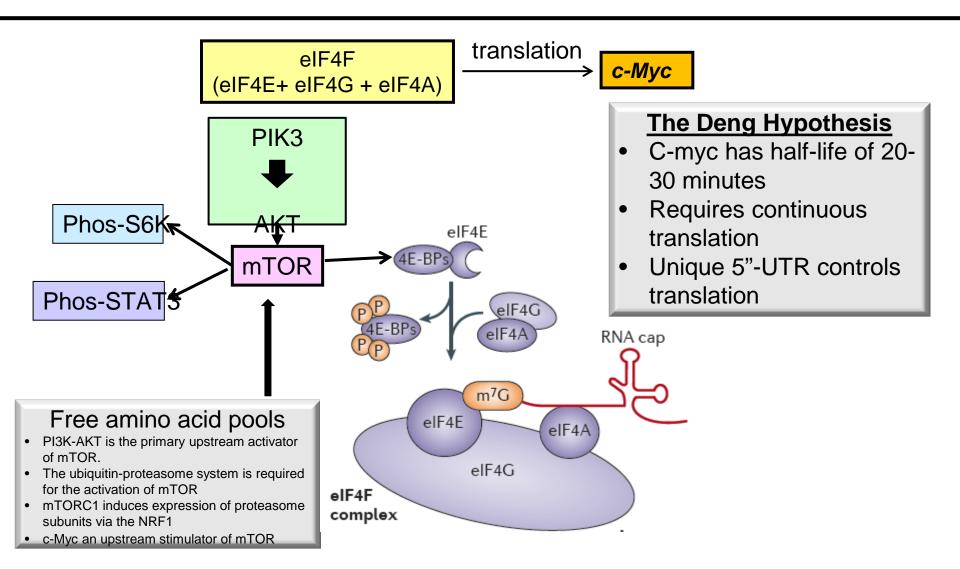
TARGET SELECTIVITY AND IN VITRO ACTIVITY


Fold-selectivity						
Isoform	α	β	γ	δ		
TGR-1202	>1000	>50	>48	1		
¹ Idelalisib	>300	>200	>40	1		
² IPI-145	>640	>34	>11	1		

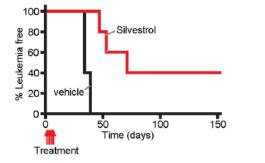

 Blinded in vitro study conducted at Duke University comparing TGR-1202 and idelalisib in CLL patient cells (n=7)³

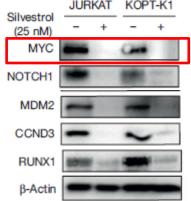

¹Flinn et al. 2009, ²Porter et al. 2012, ³Friedman et al ASH 2012

WHILE IDELALISIB, DUVALISIB & TGR-1202 ARE COMPARABLE ACROSS MANY CELL LINES – TGR-1202 IS SUPERIOR IN A FEWWHY?



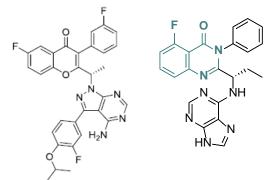
Phospho-AKT Inhibition a Relative Constant Across All Cell Lines Studied

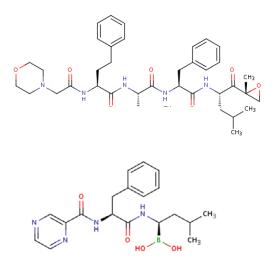



IS THE UNIQUE ACTIVITY IN DLBCL A CLUE? STRATEGIES TO TARGET C-MYC TRANSLATION

THERAPEUTIC STRATEGIES TO TARGET C-MYC TARGETING THE TRANSLATION OF C-MYC VIA EIF4F

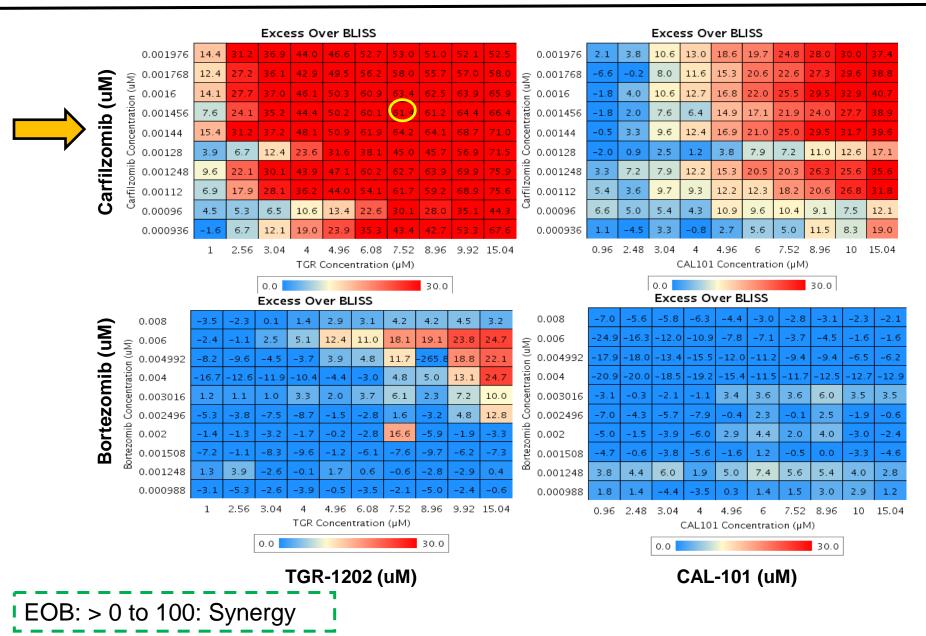
- c-Myc has a very short half life, 20-30 min.(Andresen et al. Nucleic Acids Res 2012)
- Myc needs to be translated constantly in Myc-dependent cancer. Translation of Myc is regulated by its own 5' untranslated region (UTR).
- The 5' UTR of Myc is characterized by secondary structures, specifically the (CGG)4 motif which corresponds to G-quadruplexes.
- Translation of c-Myc is highly dependent on the eukaryotic translation initiation factor 4F (eIF4F), comprised of the 4E, 4A, and 4G subunits. Myc expression is exquisitely sensitive to silvelstrol, an inhibitor of eIF4A.
- Myc dependent cancers respond to silvestrol.

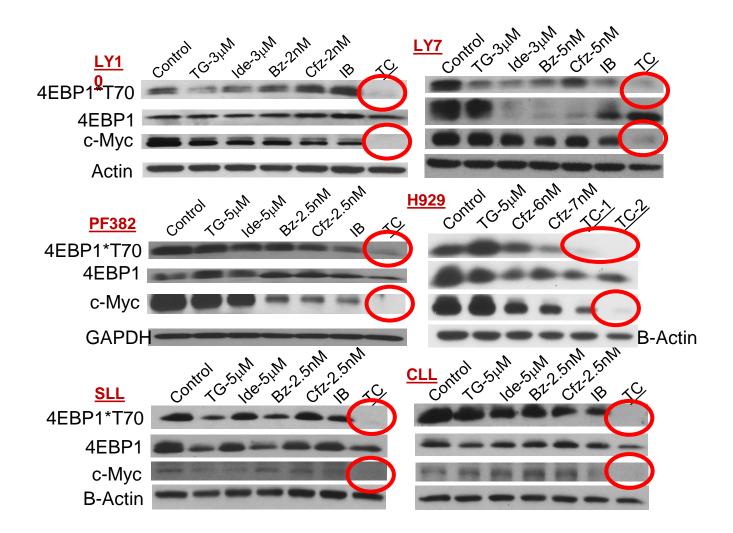




Wendel et al. Nature 2014

COMBINATIONS OF PROTEASOME AND PI3K INHIBITION AS A STRATEGY TO OPTIMIZE KILLING OF MYC DEPENDENT LYMPHOMA


- <u>Study design</u>: Test four combination pairs using HTS
- <u>Method:</u> Cell Titer-Glo



Drugs	TGR-1202 (TG)	Cal-101 (Cal)
Carfilzomib (Cfz)	TG + Cfz	Cal + Cfz
Bortezomib (Bort)	TG + Bort	Cal + Bort

HTS OF PI3K INHIBITORS PLUS REVEAL HIGHLY SYNERGISTIC INTERACTIONS UNIQUE TO THE CAR - TGR1202 COMBINATION

TC CONSISTENTLY INHIBITS PHOSPHORYLATION OF 4EBP-1 AND TURNS OFF C-MYC EXPRESSION

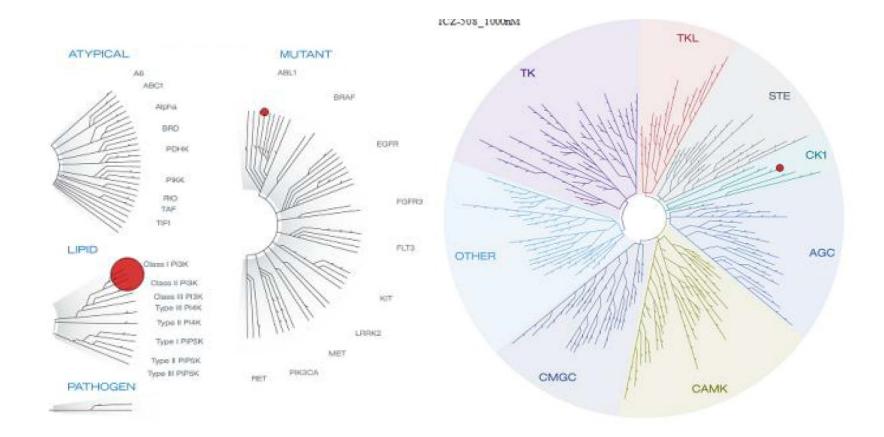
DIRECT KINASE SCREEN ACROSS HUNDREDS OF KINASES SHOWS NO DIFFERENCE AMONG PI3K INHIBITORS

	% Enzyme Activity (relative to DMSO controls)					
	TGR-12	02 (TG)	Cal-10	1 (Cal)	IPI-14	5 (IPI)
Kinase:	Data 1	Data 2	Data 1	Data 2	Data 1	Data 2
ABL1	97.80	95.06	101.29	99.51	99.56	97.17
ABL2/ARG	92.26	90.58	92.91	89.12	92.27	91.65
ACK1	94.00	93.57	91.68	90.70	96.19	95.51
AKT1	96.75	93.30	101.09	99.02	99.85	99.59
AKT2	91.97	90.82	91.65	91.60	92.95	91.98
AKT3	101.33	100.11	103.14	102.31	100.54	99.85
ALK	97.30	96.46	101.12	100.18	98.02	96.68
ALK1/ACVRL1	105.13	104.28	100.35	96.57	97.08	96.39
ALK2/ACVR1	95.84	95.54	100.01	93.96	93.92	93.62
ALK3/BMPR1A	92.46	89.45	109.23	104.63	101.25	101.07
ALK4/ACVR1B	107.13	106.22	101.96	101.06	101.96	101.06
ALK5/TGFBR1	109.04	108.90	108.88	108.13	107.67	107.56
ALK6/BMPR1B	114.93	110.07	103.15	103.15	102.84	102.58
ARAF	86.35	84.39	93.23	92.30	86.60	86.37
ARK5/NUAK1	98.91	97.77	104.54	101.66	96.77	94.97
ASK1/MAP3K5	98.92	98.39	101.87	101.86	98.03	97.67
Aurora A	99.66	99.54	105.22	103.96	98.97	96.85
Aurora B	100.65	97.20	98.56	95.57	99.80	95.62
Aurora C	95.49	94.19	90.99	90.80	90.89	89.38
AXL	93.54	91.18	97.88	93.47	96.80	93.89
BLK	101.73	99.74	99.53	97.63	99.51	96.91
BRAF	93.43	92.21	88.56	87.57	88.20	85.90
BRK	99.13	97.89	98.87	97.58	98.62	98.27
BTK	99.65	96.83	98.71	97.34	99.05	98.71
c-Kit	98.33	97.37	103.64	99.36	103.33	103.00
c-MER	104.34	102.11	103.73	103.57	103.69	102.91
c-MET	85.48	84.69	83.86	82.97	90.51	85.28
c-Src	87.70	87.62	86.50	85.15	87.62	86.73

DIRECT KINASE SCREEN ACROSS HUNDREDS OF KINASES SHOWS NO DIFFERENCE AMONG PI3K INHIBITORS

	% Enzyme Activity (relative to DMSO controls)					
	TGR-12	02 (TG)	Cal-10	1 (Cal)	IPI-145 (IPI)	
Kinase:	Data 1	Data 2	Data 1	Data 2	Data 1	Data 2
CAMK1a	99.68	99.58	97.63	96.80	103.60	102.72
CAMK1b	103.71	100.17	102.97	102.53	103.03	102.31
CAMK1d	101.24	99.10	99.64	98.81	97.42	96.02
CAMK1g	100.76	98.91	102.09	101.85	101.04	99.12
CAMK2a	100.90	100.09	101.12	100.70	96.78	95.42
CAMK2b	96.40	92.26	97.21	96.15	96.05	95.77
CAMK2d	105.10	103.33	108.56	107.41	104.93	104.32
CAMK2g	92.85	91.47	91.09	91.05	93.56	92.93
CAMK4	76.22	75.44	82.96	82.51	81.96	80.68
CAMKK1	101.92	101.74	107.62	105.38	98.33	98.12
CAMKK2	100.51	98.46	106.81	105.88	100.26	96.64
CDC7/DBF4	92.08	92.01	92.16	91.62	94.04	93.80
CDK2/cyclin A	107.14	104.50	100.85	100.26	102.50	101.42
CDK2/Cyclin A1	82.03	78.05	86.97	86.71	83.09	79.70
CDK2/cyclin E	100.05	99.03	96.24	96.23	97.37	95.57
CDK2/cyclin O	93.85	92.87	93.48	92.75	90.74	90.74
CDK3/cyclin E	85.81	84.31	87.78	86.83	88.66	88.01
CDK4/cyclin D1	103.76	103.64	109.16	108.42	115.14	110.12
CDK4/cyclin D3	99.72	98.78	101.91	99.26	98.27	97.49
CDK5/p25	92.33	90.35	99.96	99.85	95.40	92.65
CDK5/p35	91.77	91.71	98.34	97.36	97.70	97.09
CDK6/cyclin D1	89.93	89.15	95.62	94.64	91.34	91.29
CDK6/cyclin D3	100.30	97.75	103.74	102.47	96.93	96.48
CDK7/cyclin H	103.06	101.23	100.67	98.06	98.74	95.23
CDK9/cyclin K	89.89	88.84	92.36	91.51	93.22	93.11
CDK9/cyclin T1	98.87	98.47	97.18	89.55	97.62	96.17

Kinase profiling was done on a panel of 365 kinases, each with its own substrates. Activity was detected by transfer of radiolabeked phosphate from ATP to the kinase substrate.

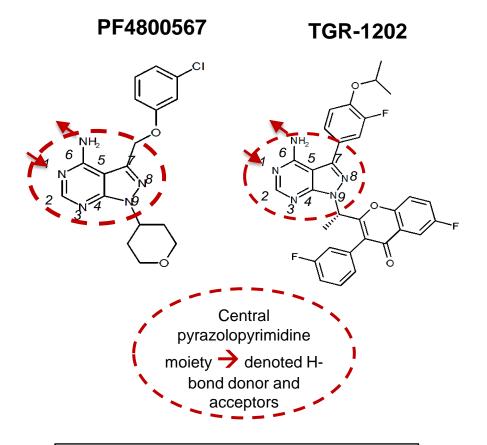

CK-1 EPSILON INHIBITED BY TGR-1202 BUT NOT IDELALISIB NOR DUVELISIB

	% Enzyme Activity (relative to DMSO controls)					
	TGR-1202 (TG) Cal-101 (Cal)		1 (Cal)	IPI-14	5 (IPI)	
Kinase:	Data 1	Data 2	Data 1	Data 2	Data 1	Data 2
CHK1	100.84	95.03	93.37	93.25	96.	01
CHK2	95.20	93.18	96.64	93.69	94.	15
CK1a1	111.14	111.10	110.07	107.15	111	.60
CK1a1L	104.85	102.63	102.48	101.10	103	.73
ARAF	105.36	97.73	96.49	103.52	100	.16
CK1delta	105.36	97.73	96.49	103.52	100	.16
CK1epsilon	40.37	39.93	93.06	92.90	92.	84
CK1g1	98.99	97.59	104.99	104.59	101	.68
CK1g2	103.96	103.60	102.10	99.65	99.	31
CK1g3	96.02	95.41	93.56	93.10	93.	14
CK2a	83.18	78.16	96.65	95.95	94.65	
CK2a2	86.43	86.37	93.50	91.75	102.34	
CLK1	102.62	102.57	100.36	97.35	105	.72
CLK2	101.65	99.52	97.58	96.88	96.	02
CLK3	94.16	93.68	94.71	89.01	93.	74
CLK4	118.04	116.45	103.22	102.95	108	.29
COT1/MAP3K8	99.80	98.20	101.59	101.10	99.	05
CSK	98.65	94.14	99.47	99.12	98.	93
CTK/MATK	106.04	105.59	107.54	104.89	107	.20
DAPK1	100.68	99.65	98.12	94.96	98.70	
DAPK2	98.40	97.93	107.35	105.85	106.41	
DCAMKL1	90.82	88.33	90.46	89.33	91.30	
DCAMKL2	96.28	94.69	95.53	94.73	94.58	
DDR1	83.64	83.14	83.80	83.80	88.	72
DDR2	106.44	104.13	108.10	106.47	110	.90

CK1 delta and CK1 epsilon are over 95% identical in sequence, but have very different sensitivity to TGR-1202

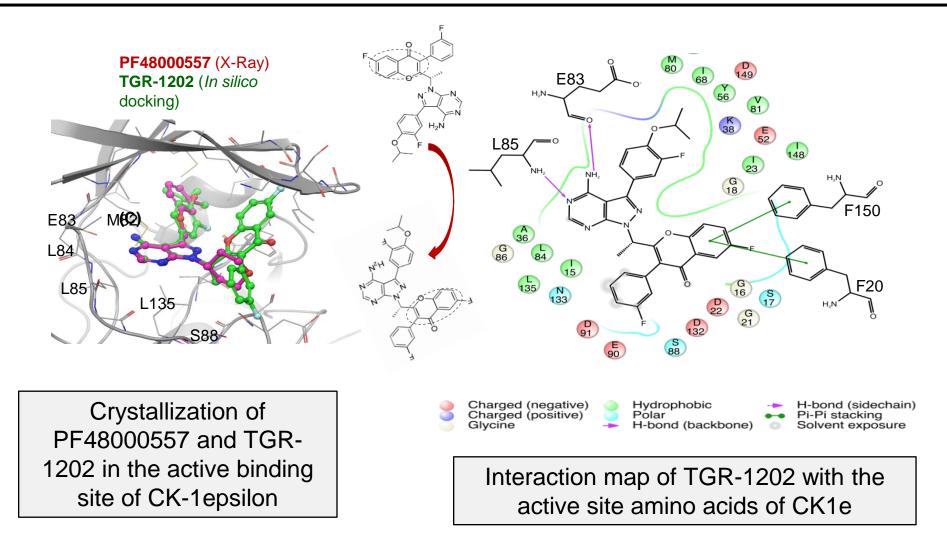
Kinase profiling was done on a panel of 365 kinases, each with its own substrates. Activity was detected by transfer of radiolabeked phosphate from ATP to the kinase substrate.

TGR-1202 Highly Selective for PI3K Delta

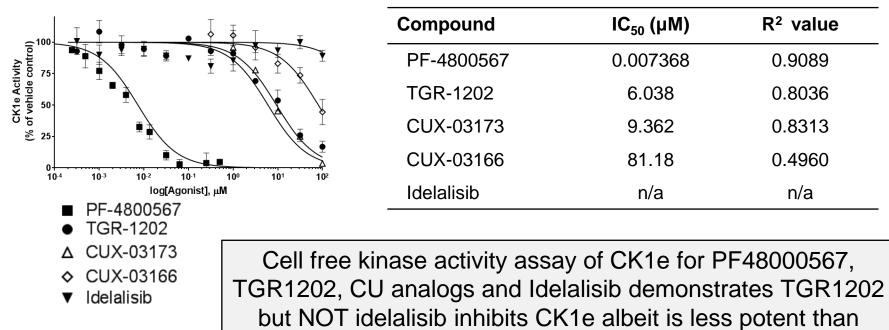


DiscoverRx Kinome Scan against a panel of 442 kinases

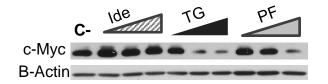
TGR-1202 SHARES STRUCTURAL FEATURES WITH A KNOWN CK-1 EPSILON INHIBITOR PF4800567


Activity	TG	TG	lde	lde	Duv	Duv
CK1a1	111	111	110	107	112	111
CK1a1L	105	103	102	101	104	99
CK1delta	105	98	96	104	100	97
CK1epsilon	<u>40</u>	<u>40</u>	<u>93</u>	<u>93</u>	<u>93</u>	<u>91</u>
CK1g1	99	98	105	105	102	98
CK1g2	104	104	102	100	99	99
CK1g3	96	95	94	93	93	93
CK2a	83	78	97	96	95	84
CK2a2	86	86	94	92	102	100

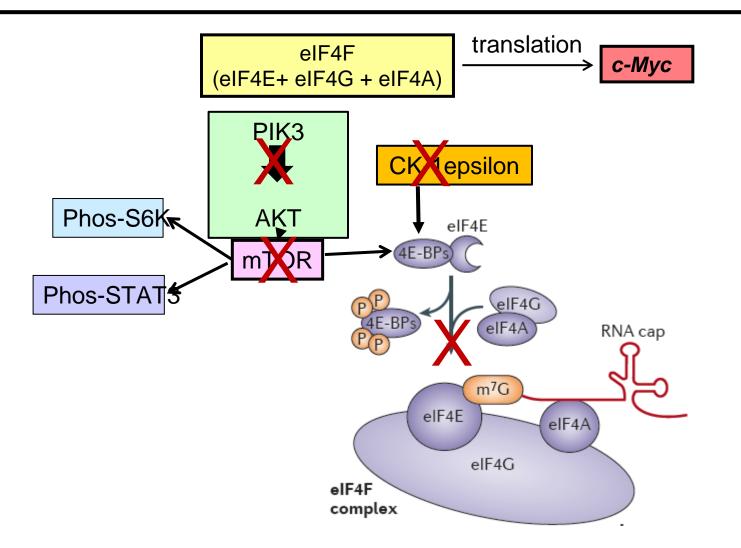
Activity of PI3 kinases against CK-1 demonstrates an isolated CK-1epsilon inhibition for TGR1202 but not the others



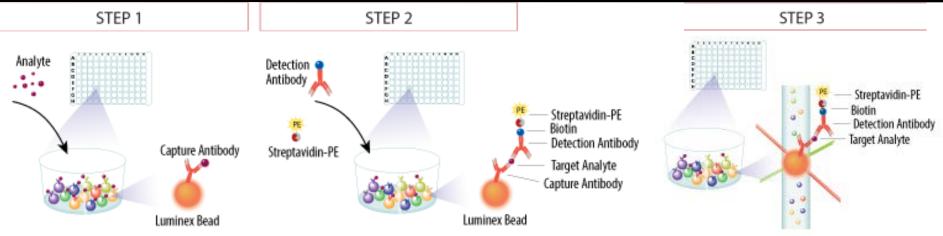
Structural formulae for PF4800567 and TGR1202 with the circled pyrazolopyrimidine moiety shared. PF4800567 is a selective CK-1epsilon inhibitor


IN SILICO DOCKING DEMONSTRATES SIMILARITY BETWEEN PF4800557 AND TGR-1202 INTERACTION WITH CK-1EPSILON

CK-1 EPSILON ACTIVITY INHIBITED BY PF48000567 AND TGR-1202 BUT NOT IDELALISIB



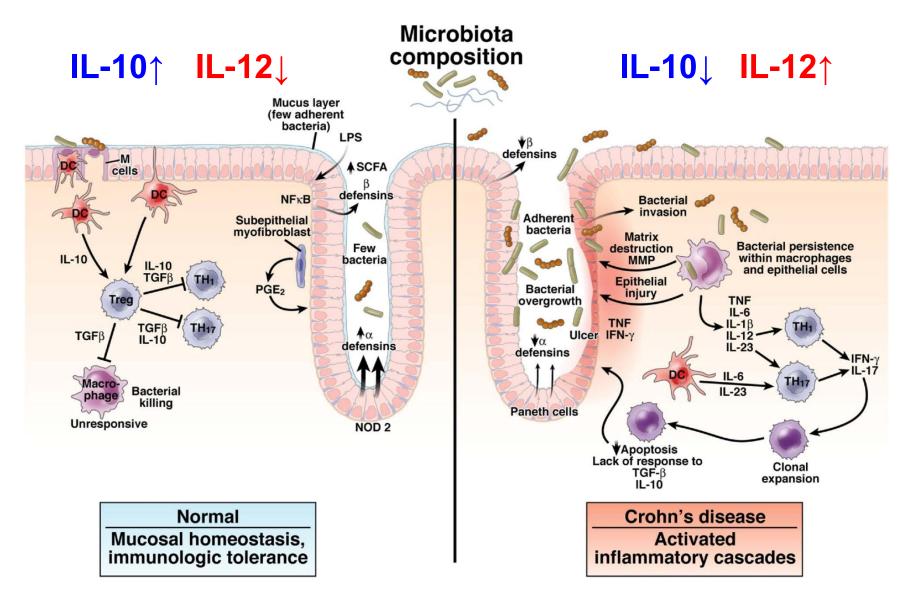
PF48000567 with statistically significant R² values


Only TGR1202 and PF48000567 effect c-myc levels

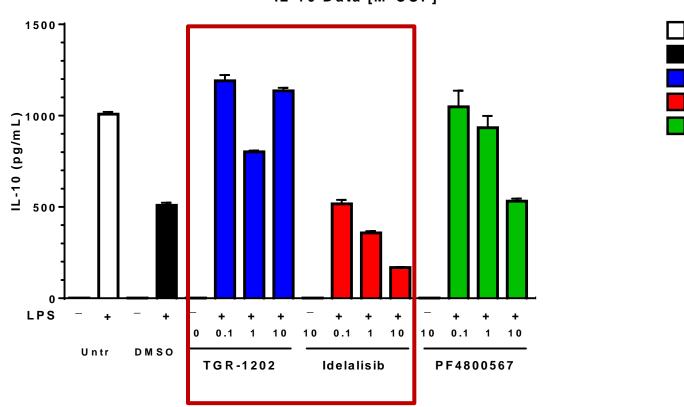
THE MODEL FOR CK-1 EPSILON INHIBITION AND IT EFFECTS ON TRANSLATION

Probing Differences in Immunologic Effects of PI3K Inhibitors

LUMINEX ASSAY: COMPARISON OF PI3K


#	Analyte	Pathway
1	IFNg	Inflammation
2	IL-1a	Inflammation
3	IL-1b	Inflammation
4	IL-1Ra	Suppression
5	IL-4	Th2
6	IL-6	Inflammation
7	IL-8/CXCL8	Inflammation
8	IL-10	Suppression
9	IL-12p40	Inflammation
10	IL-12p70	Inflammation
11	IL-13	Th2
12	IL-15	Inflammation
13	IL-17A/CTLA8	IL-17
14	IP-10/CXCL10	Inflammation
15	MCP-1/CCL2	Inflammation
16	MDC/CCL22	Inflammation
17	TNFa	Inflammation

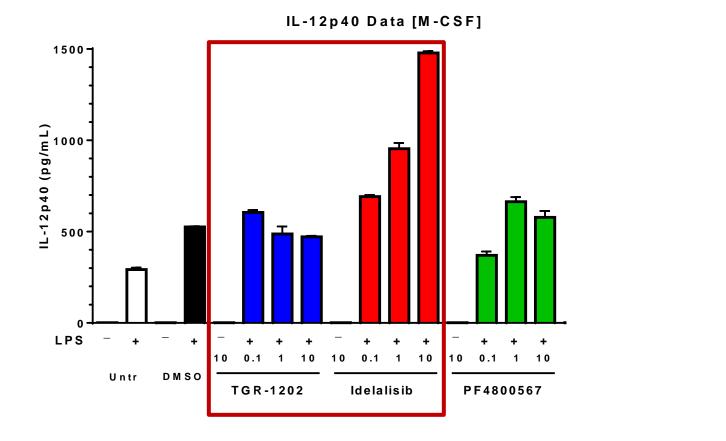
#	Analyte	Pathway
1	IL-10	Suppression
2	IL-12p70	Inflammation
3	IL-17A/CTLA8	IL-17
4	IL-17E/IL-25	IL-17
5	IL-17F	IL-17
6	IL-22	Suppression
7	IL-23	Inflammation
8	IL-27	Inflammation


The two tables include all of the cyokines from the two luminex plates used

Courtesy Michael Mangone, Columbia University

IL-10 and IL-12: The Yin and Yang of Gut Homeostasis

IDELALISIB EXHIBITS A CONCENTRATION DEPENDENT SUPPRESSION OF <u>ANTI-INFLAMMATORY IL10</u> WHILE TGR-1202 EXHIBITS NULL EFFECT


IL-10 Data [M-CSF]

Courtesy Michael Mangone, Columbia University

Untreated DMSO TGR-1202 Idelalisib

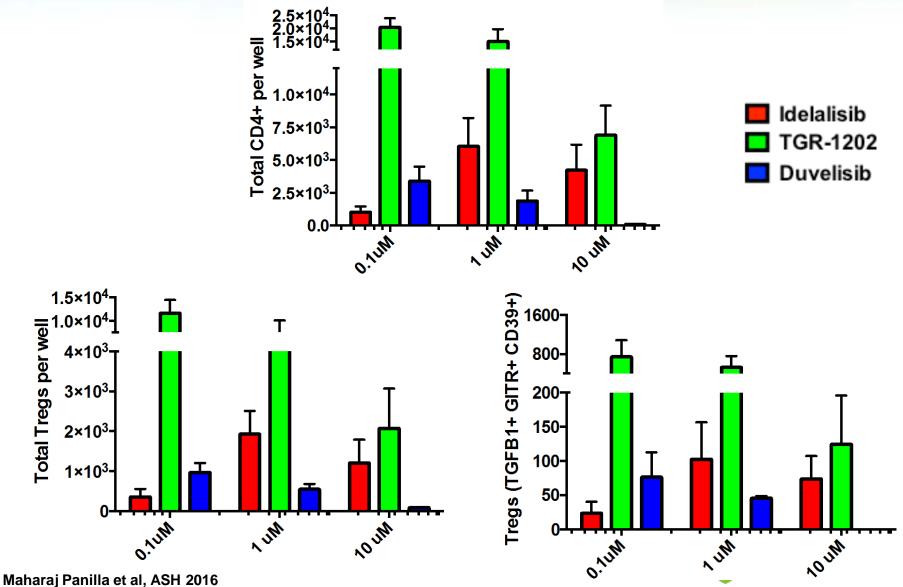
PF4800567

IDELALISIB EXHIBITS A CONCENTRATION DEPENDENT INDUCTION OF <u>PRO-INFLAMMATORY IL12</u> WHILE TGR-1202 EXHIBITS NULL EFFECT

Untreated DMSO TGR-1202 Idelalisib

Courtesy Michael Mangone, Columbia University

Modulation of T cell Compartment in a Preclinical CLL Murine Model by a Selective PI3K delta Inhibitor, TGR-1202


<u>Kamira K. Maharaj^{1,3}</u>, John Powers^{1,2}, Mibel Pabon-Saldana¹, Susan Deng¹, Alex Achille¹, Renee M. Fonseca ¹, Hari P. Miskin⁴, Dave Maryanski⁴, Eva Sahakian^{1,2} and Javier Pinilla-Ibarz^{1,3}

ASH 2016 Poster Session 642, CLL therapies Sunday Dec 4th

Ex-vivo T regs induction: TGR-1202 maintains Treg number & expression of suppressive Treg markers

32

CONCLUSIONS

- □ The marked differences among the PI3K inhibitors in the clinic are unlikely explained by differences in potency all are highly selective potent low nanomolar inhibitors of PI3K δ (+/- γ)
- The class of drugs targeting PI3K are not dead, we just need to understand differences among the available agents, including mechanisms of toxicity
- Fortuitous inhibition of a complementary kinase casein kinase 1 epsilon [CK-1) - in the PI3k-mTOR-eIF4F pathway likely accounts for effects on 4E-BP1 mediated translation ad c-myc
- It is possible that the lack of 'autoimmune effects' by one PI3 K inhibitor could relate not merely to the potency of δ inhibition, but is counter-balanced by the effects of CK-1 mediated function (i.e. antiinflammatory effects) which mitigate the pro-inflammatory response.

A Comprehensive Cancer Center Designated by the National Cancer Institute

TGR-1202 Clinical Safety

Anthony Mato, MD University of Pennsylvania

TGR-1202 Safety Summary – Common Toxicities GR 3/4 Events

	А	SH 2016 T	TA	ASCO 2016	TOTAL	
	1101+1202 +Benda	1202+ Ibrutinib	1202+ Ruxolitinib	1202+ Brentuximab	Integrated Analysis	TOTAL
n=	19	31	12	14	165	241
Diarrhea	5%	-	17%	7%	3%	4%
Colitis	5%	-	-	7%	1%	2%
AST/ALT	-	-	-	14%	3%	3%
Pneumonia	-	-	8%	-	1%	1%
Neutropenia	21%	13%	8%	43%	18%	19%
URI	-	-	-	-	-	0%
Thrombocytopenia	5%	3%	-	-	5%	4%

TGR-1202 + Ibrutinib: Safety

Toxicities of Special Interest (n=31)

- Diarrhea: 11/31 (35%) pts (29% Gr 1, 6% Gr 2, with no inflammatory colitis)
- <u>Transaminitis</u>: 7/31 (23%) pts, all Gr 1 and self-limited without the need for treatment interruption
- <u>Pneumonitis</u>: 1/31 (3%) pts, Gr 1
- <u>Bleeding events</u>: Gr 1 epistaxis, hematuria, vitreous hemorrhage in 1 CLL pt each
- <u>Atrial fibrillation</u>: 2/31 (6%) pts
- Infection: 7/31 (23%) pts

TG-1101 + TGR-1202 + Benda: Safety

All Causality AE's Occurring in \geq 15% of Patients (n = 19)

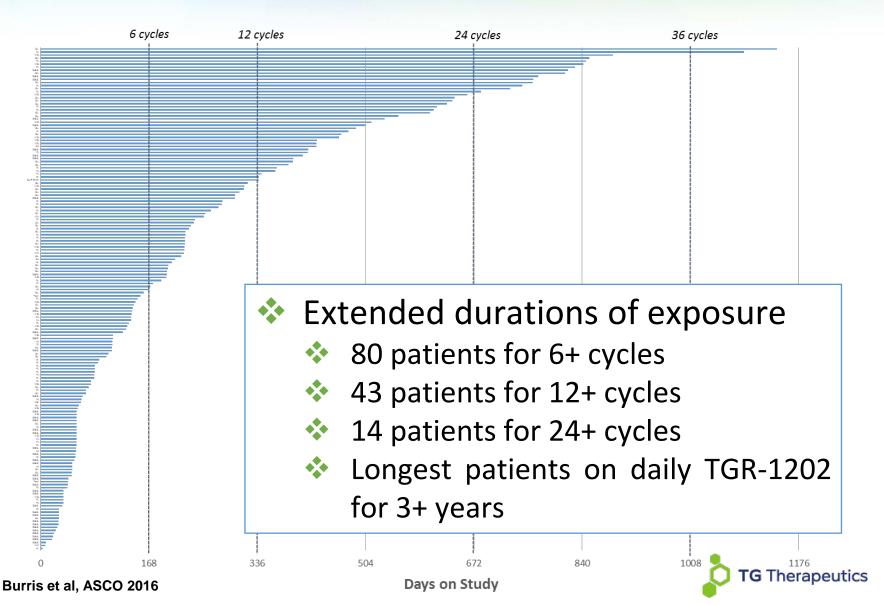
Adverse Event	All G	irades	Grade 3/4	
Adverse Event	Ν	%	Ν	%
Diarrhea	7	37%	1	5%
Decreased appetite	6	32%	1	5%
Nausea	6	32%	1	5%
Anemia	4	21%	2	11%
Neutropenia	4	21%	4	21%
Vitamin D decreased	4	21%	-	-
Arthralgia	3	16%	-	-
Asthenia	3	16%	-	-
Dysgeusia	3	16%	1	5%
Hypomagnesemia	3	16%	1	5%
Infusion related reaction	3	16%	-	-
Rash	3	16%	1	5%
Thrombocytopenia	3	16%	1	5%

- Mean time on study 6 cycles
- No patient has discontinued due to a treatment-related AE
- Growth factor support was restricted during Cycle 1 for DLT evaluation purposes
- No Grade 3/4 transaminase elevations have been reported
- 1 transient event of Grade 3 diarrhea (duration of 1 day) was reported
- No events of pneumonia or pneumonitis have been reported to date

PI3K-Delta AE Profile

 TGR-1202 has a differentiated safety profile from other PI3K delta inhibitors, including with long term follow-up

Grade 3/4 AEs All Causality	Idela + Ofa (ASCO '16) ¹ (n=173)	TGR-1202 (ASCO '16)² (n=165)
Diarrhea/ Colitis	23%	4%
Pneumonia	20%	5%
ALT/AST Elevations	13% (35% All Grades)	3% (8% All Grades)
Discontinuations due to AE	39%	<8%

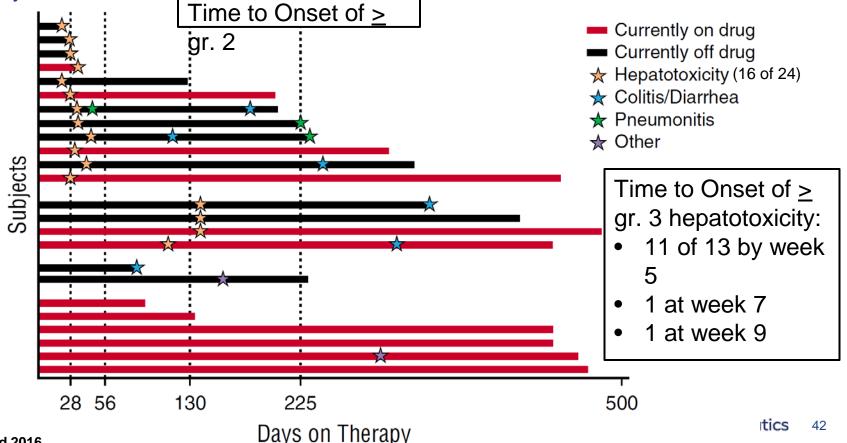

Integrated Analysis: Common "Delta" Toxicities

Toxicities (Gr. 3/4)	800mg Dose n=40	All Patients n=165
AST/ALT	5% (2)*	3% (5)*
Pneumonitis	0% (0)	1.5% (2)
Colitis	0% (0)	1.5% (2)

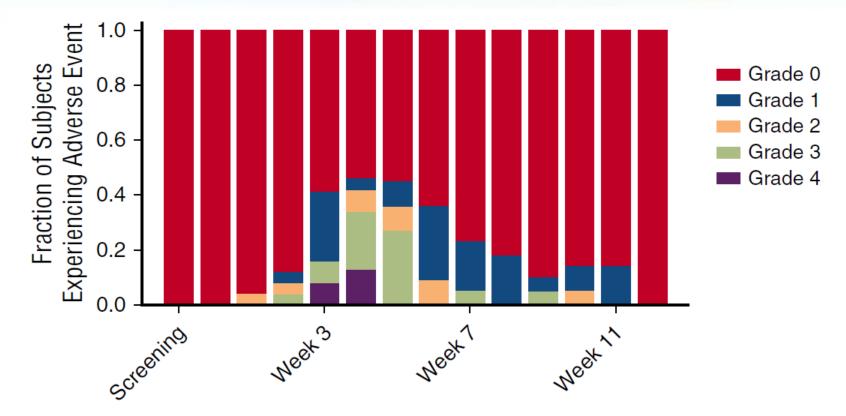
* Fisher's exact test: The two-tailed P value equals 0.6243

Integrated Analysis: Duration of Treatment

Idelalisib Caused Rapid and Serious Liver Toxicity in Front-Line Patients


CLINICAL TRIALS AND OBSERVATIONS Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity

Benjamin L. Lampson, Jennifer R. Brown, et.al. BLOOD, 14 JULY 2016 x VOLUME 128, NUMBER 2



Idelalisib Related Hepatotoxicity

- Brown et al reported high rates of immune-mediated hepatotoxicity in patients with front-line CLL treated with idelalisib
- Decreases in Treg population implicated
- Transaminitis rates of 79% all grades (gr.3/4 of 54% (13 of 24)), with median onset at 28 days

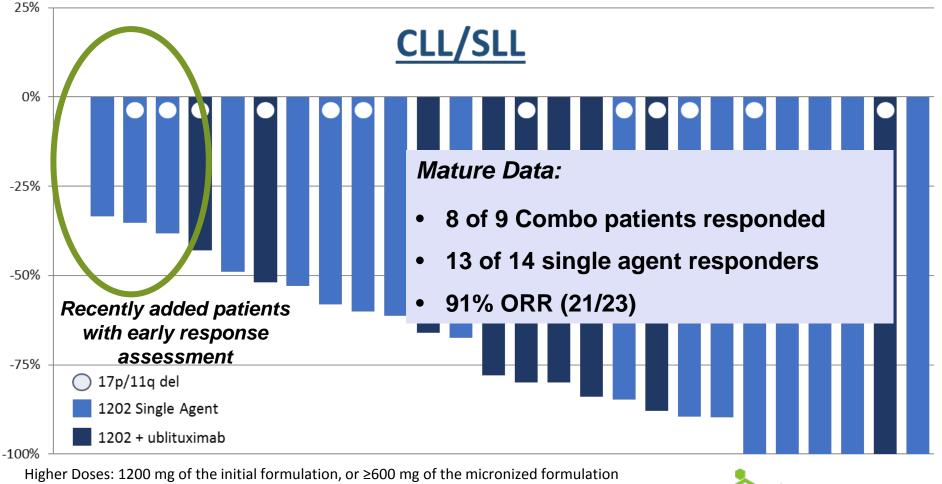
Idelalisib Liver Toxicity in Front-line Patients

- Almost all Gr. 3/4 liver tox for idela was observed by week 5
 - Gr. 3/4 Liver Tox at 6 weeks 46% (11/24 patients)
 - All Grades Liver Tox at 6 weeks 79% (19/24 patients)

Lampson et al, Blood 2016

First Unity-CLL DSMB on November 21

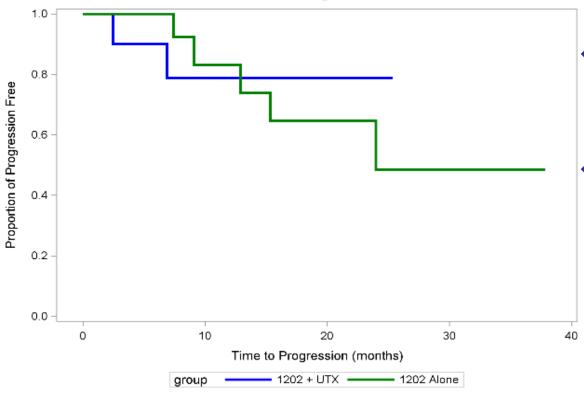
"The DSMB did not find any safety concerns and recommended the study continue without modification"


TGR-1202 Clinical Activity

Matthew Lunning, DO University of Nebraska Medical Center

Integrated Analysis: TGR-1202 Monotherapy and TGR-1202 + Ublituximab - CLL/SLL Efficacy

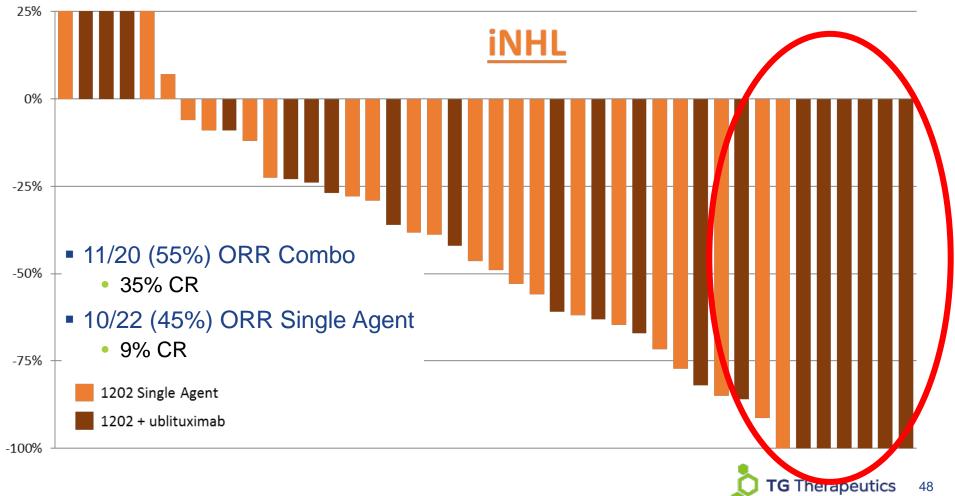
Patients Treated at "Higher Doses" of TGR-1202 Best Percent Change from Baseline in Disease Burden



Burris et al, ASCO 2016

TGR-1202 Integrated Analysis: PFS

CLL Progression-Free Survival at Higher Doses


- Median PFS for TGR-1202 Monotherapy: 24 Months
- Median PFS and DOR not reached for TGR-1202 + UTX

Integrated Analysis TGR-1202 Monotherapy and TGR-1202 + TG-1101: iNHL Efficacy

Patients Treated at "Higher Doses" of TGR-1202

Best Percent Change from Baseline in Disease Burden



Burris et al, ASCO 2016

Integrated Analysis TGR-1202 Monotherapy and TGR-1202 + TG-1101: DLBCL Efficacy

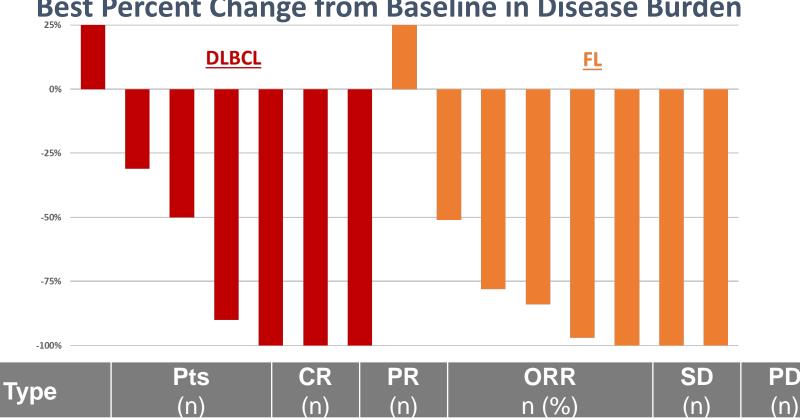
Patients Treated at "Higher Doses" of TGR-1202

Best Percent Change from Baseline in Disease Burden

Burris et al, ASCO 2016

DLBCL Case Study: Univ. of Nebraska Patient on TG-1101 (Ublituximab) + TGR-1202

Background


- 74 yo Female
- GCB Subtype
- Received R-CHOP frontline therapy
 - Relapsed within 1 year
- Received R-Gem/Ox
 - Relapsed within 6 months

Outcome

- Started on TGR-1202 + TG-1101 clinical trial
 - Cycle 3: PR (54% reduction)
 - Cycle 6: PR (71% reduction)
 - Cycle 9: PR (71% reduction)
 - Cycle 12: PR (88% reduction)
- On study treatment for 13+ months

TG-1101 + TGR-1202 + Benda: Efficacy

2

4

6

Best Percent Change from Baseline in Disease Burden

2

51

1

5 (71%)

7 (88%)

12 (80%)

7

8

15

3

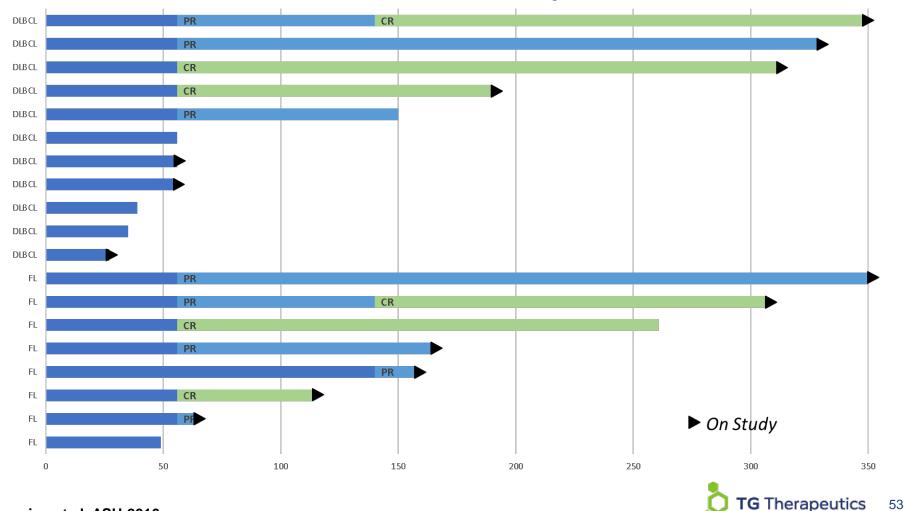
3

6

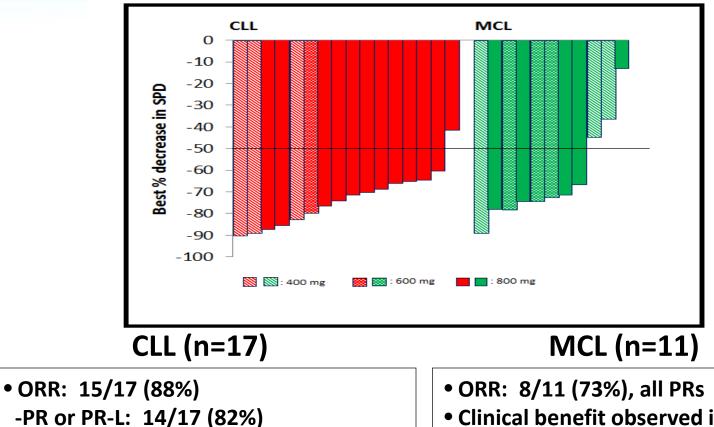
DLBCL

FL

Total


TG-1101 + TGR-1202 + Benda: Efficacy

Histology	TGR Dose	Rel/Ref	Prior Therapies	Best ORR
DLBCL	600	Ref	R-CHOP, R-ICE	PD
DLBCL	600	Ref	R-CHOP, R-ICE, BEAM, ASCT	SD
DLBCL	600	Rel	R-CHOP	PR
DLBCL	800	Ref	R-CHOP, R-Adria, Pembro + Acalabrutinib	PR
DLBCL	600	Rel	R-CHOP	CR
DLBCL	800	Ref	Revlimid Revlimid	CR
DLBCL	800	Rel	R-CVAD, R-ICE, BEAM, ASCT	CR
FL	600	Rel	R-EPOCH, ASCT	PD
FL	600	Ref	R-CHOP , Radiation, Rituximab	PR
FL	600	Rel	R-Benda, R + Idelalisib, CPI-1205	PR
FL	600	Rel	R-Benda, Rituximab	PR
FL	800	Ref	R-CHOP	PR
FL	600	Rel	CHOP, R-ICE, ASCT	CR
FL	600	Rel	R-CHOP	CR
FL	600	Ref	R-CHOP	CR


TG-1101 + TGR-1202 + Benda: Efficacy

Duration on Study

Lunning et al, ASH 2016

TGR-1202 + Ibrutinib: Efficacy (n=28)

-CR: 1/17 (6%)

nearing radiographic CR

• 5 PR patients with >80% SPD decrease,

• Clinical benefit observed in 2 additional patients

- Median follow-up time among survivors: 11 mo. (range 0.1-23.5)
- 1-year PFS and OS for CLL is 94% (n=17)
- 1-year PFS and OS for MCL is 37% and 52%, respectively (n=11)
- 6 MCL patients have died (5 due to PD, 1 due to toxicity from subsequent therapy)
- 1 CLL patient had sudden death deemed unlikely due to study drugs

Toxicities and Outcomes of Ibrutinib-Treated Patients in the United States: Large Retrospective Analysis of 621 Real World Patients

Anthony R. Mato, MD Center for CLL University of Pennsylvania

Toxicities and Outcomes of Ibrutinib-Treated Patients

Baseline Characteristics					
Ibrutinib in front line Ibrutinib in re					
Total Number	80	536			
Med age dx (range)	62 (37-88), n=78	60 (22-95), n=532			
Med prior tx (range)	0 (0-0), n=80	2 (1-10), n=536			
del17p (+)	37%, n=76	26%, n=368			
del11q (+)	19%, n=75	35%, n=367			
p53 mut (+)	12%, n=42	13%, n =142			
Complex karyotype (+) (≥ 3)	40%, n=60	34%, n=214			
Med time dx to lbr (range)	26 months (1-232)	78 months (1-660)			
Med Ibr starting dose	420 mg 420 mg				
lbr administered as monotherapy	68%, n=80	89%, n=536			
lbr hold required	30%, n=79 37%, n=310				
lbr dose adjusted	15%, n=79 20%, n=309				
Median follow up	17 months				

57

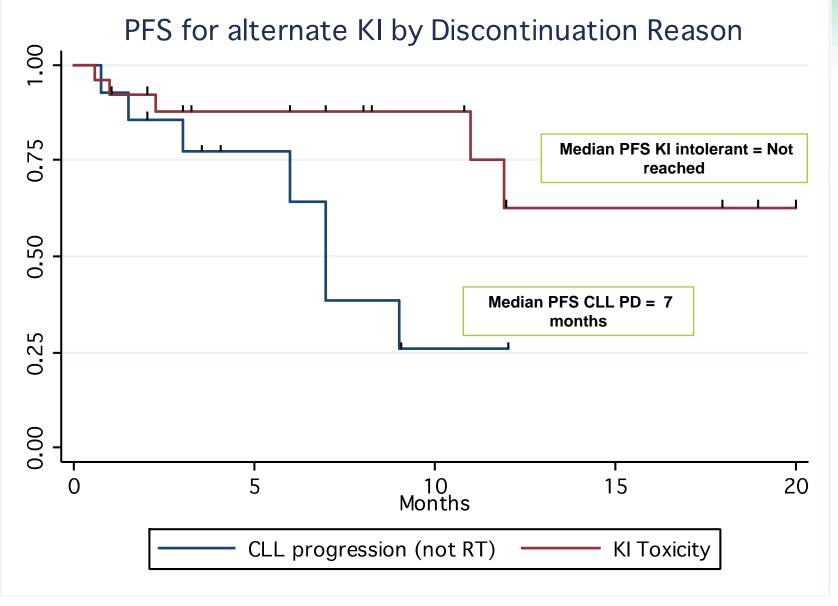
Ibrutinib Discontinuation

Reason for ibrutinib Discontinuation	Ibrutinib in front line		Ibrutinib in Relapse		
	Commercial Use (%) n=10	Clinical Trial (%) n=9	Commercial Use (%) n=200	Clinical Trial (%) n=31	
Toxicity	50.0	77.7	52.5	38.7	
CLL progression	10.0	22.2	19.0	35.5	
Other/unrelated death	10.0	0.0	12.0	12.9	
Physician or patient preference	20.0	0.0	6.0	9.7	
RT DLBCL	0.0	0.0	4.5	0.0	
Stem cell transplantation/ CAR T-cell	0.0	0.0	3.5	3.2	
Financial concerns	0.0	0.0	1.0	0.0	
Secondary malignancy	10	0.0	1.0	0.0	
RT Hodgkin lymphoma	0.0	0.0	0.5	0.0	

Most Common Ibrutinib Related Toxicity

Most common ibrutinib related toxicities as reasons for discontinuation

Relapsed CLL (%)	Front-line CLL (%)
Atrial fibrillation (12.3)	
Infection (10.7)	Arthralgia (41.6)
Pneumonitis (9.9)	Atrial fibrillation (25)
Bleeding (9)	Rash (16)
Diarrhea (6.6)	


Median times to ibrutinib discontinuation stratified by toxicity

Bleeding	8 months
Diarrhea	7.5 months
Atrial fibrillation	7 months
Infection	6 months
Arthralgia	5 months
Pneumonitis	4.5 months
Rash	3.5 months

•In the largest reported series on ibrutinb treated CLL patients, 40% of patients have discontinued ibrutinib during this observation period.

•Ibrutinib intolerance was the most common reason for discontinuation in all settings.

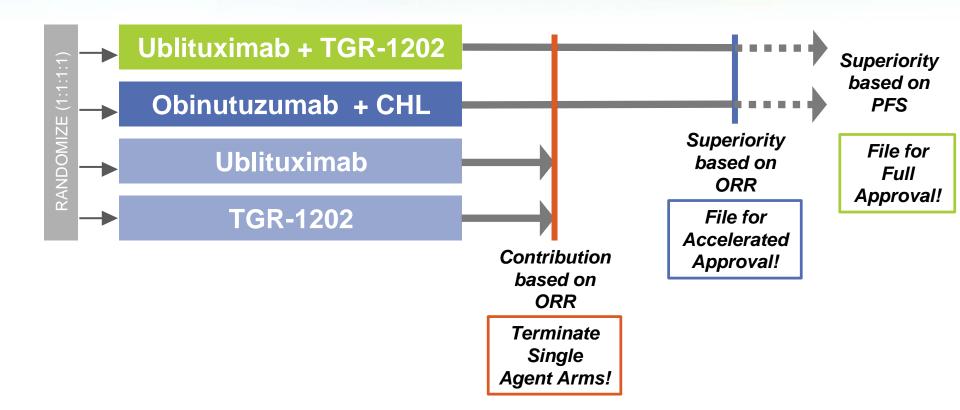
RT excluded from analysis

Acalabrutinib Monotherapy in Patients with Ibrutinib Intolerance. Results from the Phase I/2 ACE-CL-001 Clinical study

an priv, at the aller 2018				
010	M) Advor	e Events	On Study (N	1 = 33)
Most Common (≥15	Grade 1	Grade 2	Grades 23	All Grades
Adverse Event, n (%)	and the second division of the second divisio	2 (6)	0	17 (52)
Dianhea	15 (46)	3 (9)	0	13 (39)
Headache	10 (30)	4 (12)	0	8 (24)
Caugh	4 (12)		0	8 (24)
Increased weight	4 (12)	4 (12)	0	7 (21)
Nausea	6 (18)	1 (3)		0 (18)
Contusion	4 (12)	2 (6)	0	
Ecchymosis	8 (15)	1 (3)	0	6 (18)
Fatigue	3 (0)	3(9)	0	6 (18)
Hypertension	2 (6)	2 (6)	2 (6)	0 (18)
Pyrexia	5 (15)	0	1 (3)	6 (18)
Ismiling	4 (12)	2 (6)	0	6 (18)
Wyalgia	2 (6)	2 (6)	1 (3)	5 (15)
Rash	5 (15)	0	0	5 (15)
Stomatitis	5 (15)	0	0	5 (15)
Ipper respiratory tract infection	2 (6)	3 (9)	0	5 (15)
Anary tract infection	0	5 (15)	0	5 (15)

 36% (12 of 33) patients experienced AE recurrence most of which decreased or the same severity

G Therapeutics



Michael S. Weiss

UNITY Phase 3 Overview & Panel Discussion

UNITY-CLL – Phase 3 Trial

- Design, Endpoints, and Statistics agreed to via Special Protocol Assessment (SPA)
- Enrolling ~450 patients with previously treated and previously untreated CLL
- Primary Endpoint: PFS

UNITY-CLL Study Update

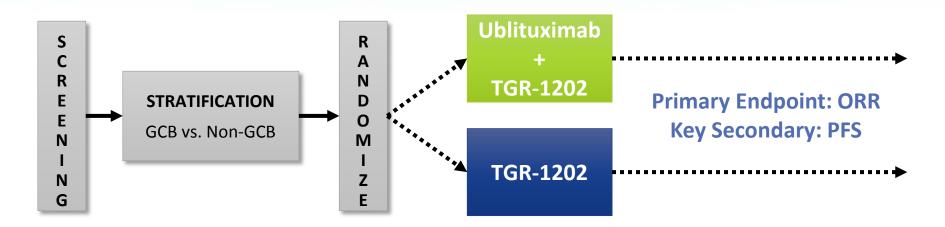
 ~90 sites for UNITY-CLL open to date, with an estimated 20 more planned in US

Ex-US sites to open bringing site total to 150+

- Early enrollment trends robust
 - On track for completing enrollment by 1H 2018 (~2 year enrollment period)

Panel Participants

Panelist	Affiliation
Nilanjan Ghosh, MD, PhD	Carolinas Healthcare/Levine Cancer Center
Kathryn Kolibaba, MD	Compass Oncology, Vancouver, WA; US Oncology Research, The Woodlands, TX
Matthew Lunning, DO	University of Nebraska
Anthony Mato, MD	University of Pennsylvania
Owen O'Connor, MD, PhD	Columbia University Medical Center



CLL Panel Discussion

	CLL PROJECTED TREATMENT LANDSCAPE					
Front-Line	FCR/ BR	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Novel BTK + Gazyva	Venetoclax + Gazyva	Gazyva + CHL
Relapsed/ Refractory	BR	TG-1101 + TGR-1202 (UNITY-CLL)	Ibrutinib or Ibrutinib +Gazyva	Ibrutinib + TG- 1101 (GENUINE)	Venetoclax or Venetoclax + Benda Rituxan	Idela + BR Idela + R

FCR: Fludarabine Cyclophosphamide Rituxan; BR: Bendamustine Rituxan; Idela: Idelalisib; R:Rituxan; Chloram: Chlorambucil

UNITY-DLBCL – Phase 2b Trial

- Up to 100 US and Ex-US sites
- Site contracting underway...
- Study Chair US: Owen A. O'Connor, MD PhD
- Study Chair Ex-US: Pier-Luigi Zinzani, MD

PREVIOUSLY TREATED DLBCL PATIENTS

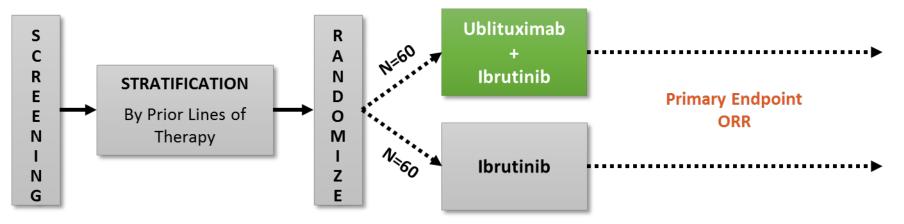
DLBCL Landscape Panel Discussion

	DLBCL PROJECTED TREATMENT LANDSCAPE			
Front-Line	R-CHOP			
Relapsed/Refractory (not eligible for transplant)	 BR GEMOX Rev ICE R-ICE R-DHAP 	TG-1101 + TGR-1202 <i>(UNITY-DLBCL)</i>	CAR-T	

BR: Bendamustine Rituxan; GEMOX: Gemcitabine Oxaliplatin; Rev: Revlimid; ICE: Lfosfamide Carboplatin Etoposide; RICE: Rituxan Lfosfamide Carboplatin Etoposide; R-DHAP: Rituxan Dexamethasone Cisplatin Cytarabine

Concluding Remarks

Michael S. Weiss Executive Chairman & Interim CEO



Highlights of ASH 2016

- Safety Profile Preserved:
 - ASH Data 2016 plus ASCO 2016 integrated analysis
 - >240 patients treated
 - Across 6 clinical trials
 - Incidence of transaminitis 3%; colitis 2%; pneumonia/pnuemonitis 1%
- Significant activity seen in:
 - 1303 + Benda in DLBCL (71% ORR) and FL (88% ORR)
 - 1202 + Ibrutinib (88% CR, PR and PR+L)
 - 1202 plus Brentuximab (50% ORR in BV refractory patients)

Announcing... Target Enrollment Complete!!!

Topline Data Expected mid-2017

