

2014 ASH Analyst & Investor Event

December 8, 2014

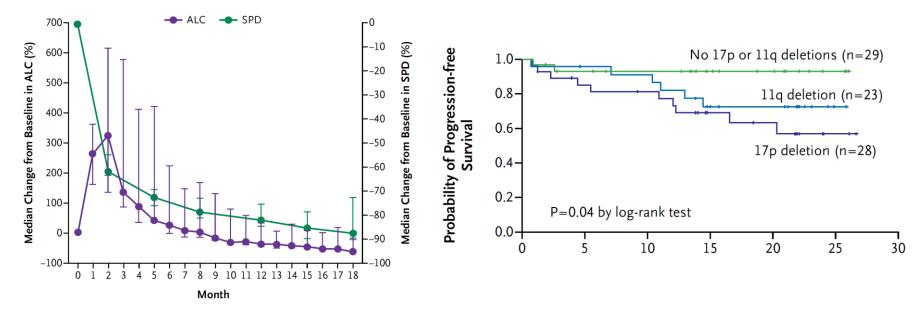
This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. These statements are often, but not always, made through the use of words or phrases such as "anticipates", "expects", "plans", "believes", "intends", and similar words or phrases. Such statements involve risks and uncertainties that could cause TG Therapeutics' actual results to differ materially from the anticipated results and expectations expressed in these forward-looking statements. These statements are only predictions based on current information and expectations and involve a number of risks and uncertainties. Actual events or results may differ materially from those projected in any of such statements due to various factors, including the risks and uncertainties inherent in clinical trials, drug development, and commercialization. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof. All forward-looking statements are qualified in their entirety by this cautionary statement and TG Therapeutics undertakes no obligation to update these statements, except as required by law.

Event Agenda & Speakers

AGENDA	SPEAKER
Overview & Introductions	Michael S. Weiss, CEO of TGTX
TG-1101 + ibrutinib	Dr. Jeff P. Sharman
Q&A Session	Dr. Sharman
TG-1101 (ublituximab) Overview	Dr. Owen A. O'Connor
TGR-1202 Data Review	Dr. Manish R. Patel
TG-1101 + TGR-1202 Data Review	Dr. Nathan Fowler & Dr. Matthew Lunning
Patient Experience Anecdote	
Q&A Session	Dr.'s O'Connor, Patel, Fowler & Lunning
Closing Remarks	

Ublituximab (TG-1101), a Novel Glycoengineered Anti-CD20 Monoclonal Antibody, in Combination with Ibrutinib Is Highly Active in Patients with Relapsed and/or Refractory CLL and MCL: Results of a Phase II Trial

Jeff P. Sharman, MD


Jeff P. Sharman, MD^{1,2}, Charles M. Farber, MD, PhD³, Daruka Mahadevan, MD, PhD⁴, Marshall T. Schreeder, MD⁵, Heather D. Brooks, MD^{1,6}, Kathryn S. Kolibaba, MD^{1,7}, Suzanne R. Fanning, DO^{1,8}, Leonard M. Klein, MD^{1,9}, Peter Sportelli¹⁰, Hari P. Miskin, MS¹⁰, Michael S. Weiss¹⁰ and Daniel R. Greenwald, MD^{1,11}

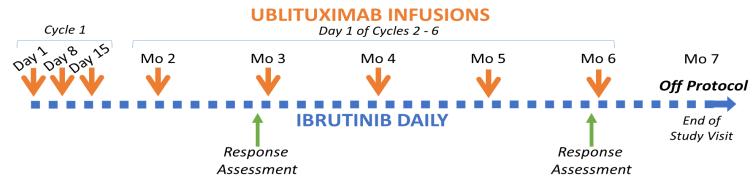
¹US Oncology Research, The Woodlands, TX; ²Willamette Valley Cancer Institute, Springfield, OR; ³Carol G. Simon Cancer Center, Morristown, NJ; ⁴West Cancer Center/UTHSC, Memphis, TN; ⁵Clearview Cancer Institute, Huntsville, AL ⁶Blue Ridge Cancer Care, Blacksburg, VA; ⁷Compass Oncology, Vancouver, WA; ⁸Greenville Heath System Cancer Institute, Greenville, SC; ⁹Illinois Cancer Specialists, Niles, IL; ¹⁰TG Therapeutics, Inc., New York, NY; ¹¹Cancer Center of Santa Barbara, Santa Barbara,

CA

Single Agent Ibrutinib (Historical Data)

 Ibrutinib was approved for the treatment of patients with CLL with 17p deletion, and patients with CLL who have received at least one prior therapy based on the following data:

5


- Nodal reductions on ibrutinib monotherapy are accompanied by marked lymphocytosis
- Patients with "high-risk" cytogenetic abnormalities have been shown to have poorer prognoses on ibrutinib monotherapy

Study Design

A safety run-in (Part 1) of the study is designed to enroll 6 patients per cohort. Efficacy is assessed at 3 and 6 months. After month 6, all patients can stay on ibrutinib single agent, off protocol.

Dose Escalation Schema:

	M	CL	CLL/SLL		
Cohort	UTX Dose	Ibrutinib	UTX Dose	Ibrutinib	
Conort	(Days 1, 8, 15)	(Daily)	(Days 1, 8, 15)	(Daily)	
1	900 mg	560 mg	600 mg	420 mg	
2	-	-	900 mg	420 mg	

Patient Demographics

	CLL	MCL
Evaluable for Safety, (n)	44	8
Evaluable for Efficacy, ⁺ (n)	39	8
Median Age, years (range)	71 (39 – 86)	72 (55 – 80)
Male/Female	22/22	7/1
ECOG, median	1	1
Prior Regimens, median (range)	2 (1 – 7)	2 (1 – 6)
≥ 3 Prior Regimens	16 (36%)	3 (38%)
Prior Anti-CD20	41 (93%)	8 (100%)
Prior Alkylating Agent	28 (64%)	8 (100%)
Prior Purine Analog	22 (50%)	-

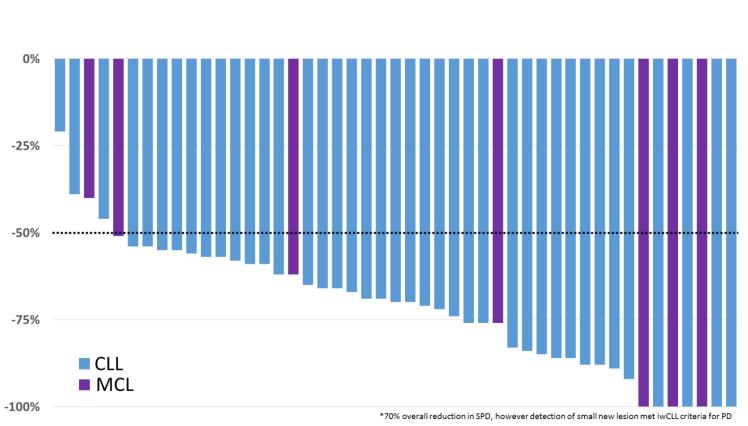
[†]5 patients came off study prior to first disease assessment: 1 due to ibrutinib related AE (diarrhea); 2 due to multiple non-drug related AE's; 2 withdrew consent

 51% of evaluable CLL patients (20/39) were classified as "high-risk" exhibiting a 17p del, 11q del, and/or p53 mutation

Study Results - Safety

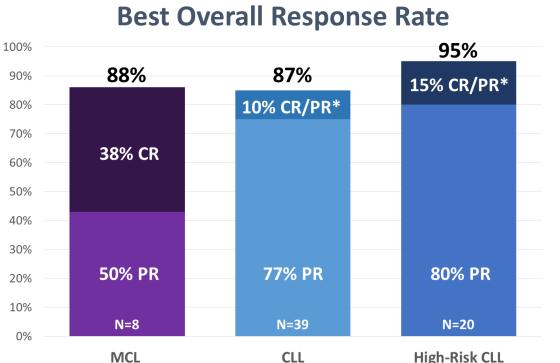
All Causality AE's in > 5% of Patients (n=54)						
Adverse Event	All Grades	Grade 3/4				
Auverse Event	n (%)	n (%)				
Infusion reaction	18 (33%)	3 (6%)				
Diarrhea	15 (28%)	2 (4%)				
Fatigue	14 (26%)	1 (2%)				
Rash	11 (20%)	2 (4%)				
Bruising	8 (15%)	-				
Nausea	8 (15%)	-				
Mucositis	8 (15%)	-				
Cough	7 (13%)	-				
Edema	7 (13%)	-				
Fever	6 (11%)	-				
Thrombocytopenia	6 (11%)	2 (4%)				
Neutropenia	3 (6%)	3 (6%)				

• All rash and Grade 3/4 diarrhea events deemed related to ibrutinib per investigator assessment.


Dose Reductions & Treatment Discontinuations

- Ibrutinib dose reduced in 4 patients (diarrhea, rash, cough, fatigue)
- No patients had their ublituximab dose reduced
- 2 patients discontinued due to ibrutinib related AEs (rash, diarrhea)
- 2 patients discontinued due to non-related AEs (pre-existing AE's)

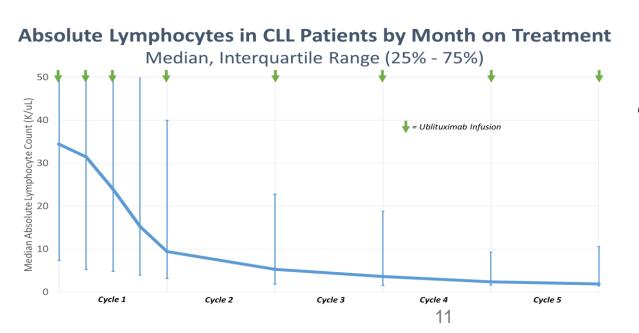
Study Results - Efficacy


25%

Best Percent Change from Baseline in Nodal Size

- 30% of patients were considered anti-CD20-refractory, progressing on or within 6 months of an anti-CD20 based regimen
- Prior anti-CD20 therapy included rituximab, ofatumumab, and obinutuzumab

Study Results - Efficacy


High-Risk CLL

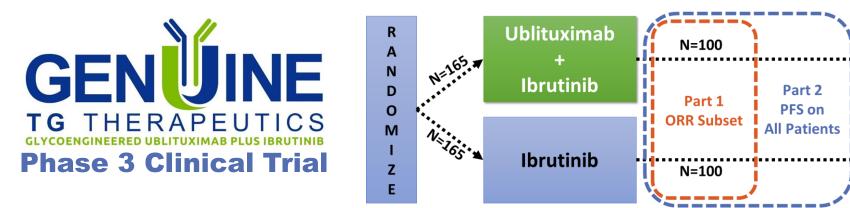
Туро	Pts	CR	PR*	PR	nPR	SD	PD	ORR
Туре	(n)	(%)						
CLL	39	1	3	30	1	3	1	87%
High-Risk Subset	20	1	2	16	-	-	1	95%
MCL	8	3		4		1	-	88%

Study Results - Efficacy

Median Nodal Reduction at First and Second Scan

Addition of ublituximab appears to control ibrutinibrelated lymphocytosis in patients with CLL, with a median 75% decrease in ALC from baseline by the end of Cycle 3

 \bigcirc


 More than 50% of CLL patients had lymphocyte counts in normal range (<4000/uL) within 6 cycles of therapy

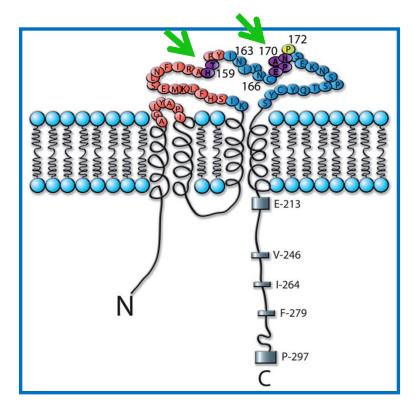
Study Conclusions

- Data from this ongoing study suggests ublituximab, a glycoengineered anti-CD20 mAb, in combination with ibrutinib is both a well tolerated and highly active regimen for patients with relapsed or refractory CLL and MCL
- Contrary to non-clinical data describing antagonism between BTK inhibition and ADCC, the addition of ublituximab appears to improve ORR in patients with CLL and MCL over that published historically with single agent ibrutinib in these patient populations
- A 95% ORR in patients with high-risk CLL (17p del, 11q del, and/or p53 mutation) suggests the combination may be an effective treatment regimen in this patient population; supporting a planned randomized Phase 3 clinical trial (the <u>GENUINE</u> trial)
- Additional studies are ongoing evaluating ublituximab in combination with other novel, targeted agents, with Phase III studies in development

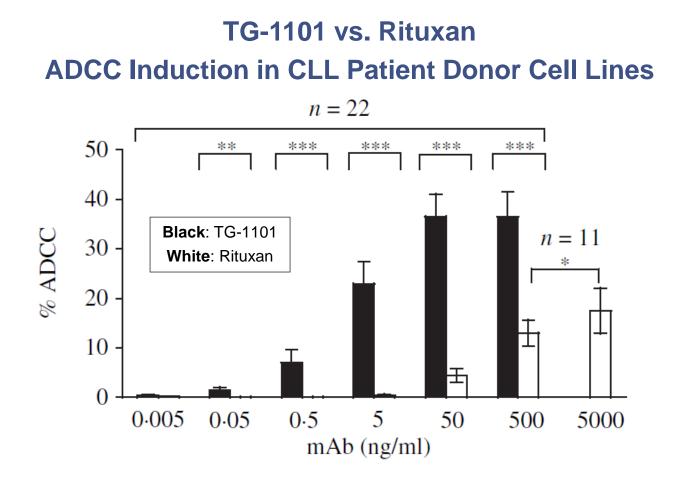
Phase III Clinical Trial

GENUINE (UTX-IB-301) Study Schema

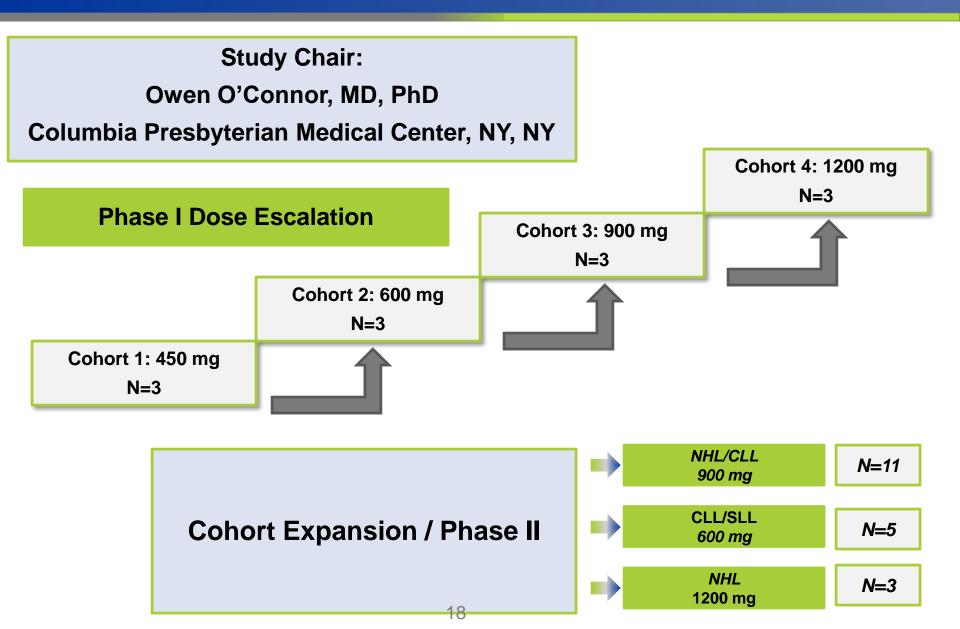
- Design, Endpoints, and Statistics agreed to via Special Protocol Assessment (SPA)
- Enrolling ~330 patients with high-risk CLL
- ORR amongst first 200 patients for accelerated approval
- PFS amongst all enrolled patients for full approval
- Study Chair: Dr. Jeff Sharman


Questions?

Owen A. O'Connor, MD, PhD


Professor of Medicine and Experimental Therapeutics Director of the Center for Lymphoid Malignancies Columbia University Medical Center

Ublituximab: A Novel Glycoengineered Anti-CD20 mAb

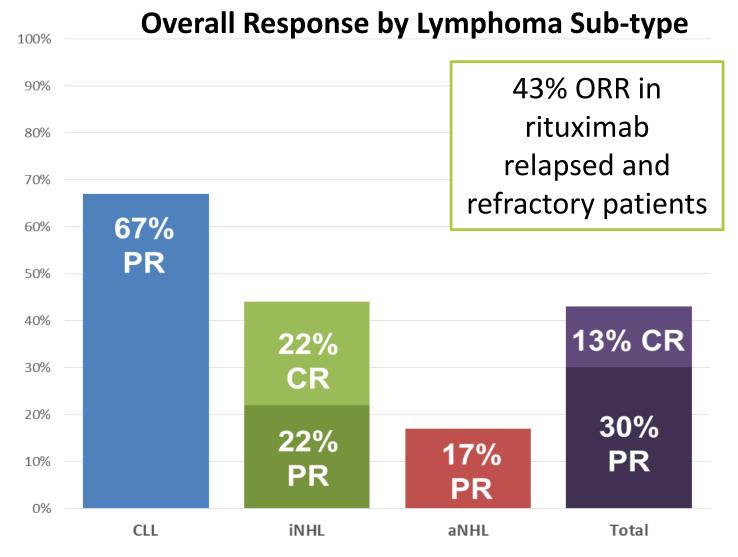

- Unique protein sequence
- Type 1 Chimeric IgG1 mAb
- Potential advantages over current standard of care:
 - Glycoengineered for significantly enhanced ADCC
 - Activity in "low" CD20 expressing cell lines, a characteristic of rituximab resistance
 - Binds to a novel epitope on CD20

Glycoengineering for Enhanced ADCC

TG 1101-101: Phase I/II of Ublituximab in Patients with B-Cell Lymphoma - Relapsed/Refractory to Rituximab

Safety of Ublituximab

- Day 1 Infusion Related Reaction most common adverse event
 - manageable with infusion interruptions only and recovered without sequelae
- Infusion times decreased to an average of <u>90 minutes</u> for the 4th and all subsequent infusions


At Least Possibly Related AE's

All Patients (n = 35)					
AE	All Grades n (%)	Grade 3/4 n (%)			
Infusion Related Reaction*	10 (29%)	0			
Fatigue	5 (14%)	1 (3%)			
Diarrhea	4 (11%)	0			
Pain (General)	4 (11%)	0			
Dysgeusia	3 (9%)	0			
Bilirubin Increase	2 (6%)	0			
Pruritus	2 (6%)	0			

At Least Possibly Related Lab Abnormalities

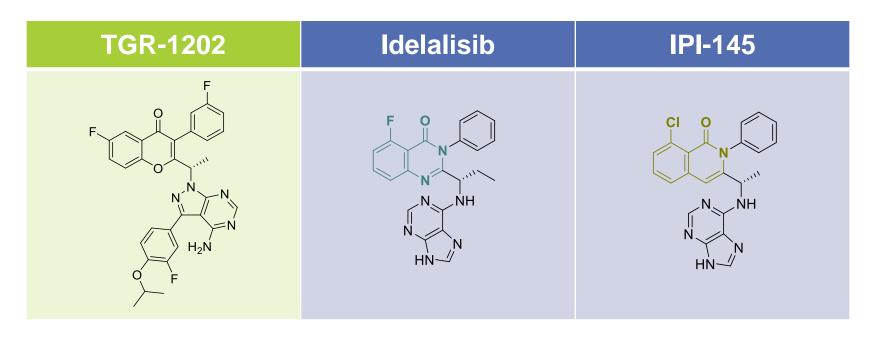
	CLL	(n=8)	NHL (n=27)			
AE	Grade 1/2	Grade 3/4	Grade 1/2	Grade 3/4		
	n	n	n	n		
Neutropenia	1	3	0	0		
Thrombocytopenia	1	1	0	0		
Anemia	0	0	0	1		

Demonstrated single agent activity: *TG-1101 Phase 1 Efficacy Results ASCO/EHA 2014*

Ublituximab – Take Home Messages

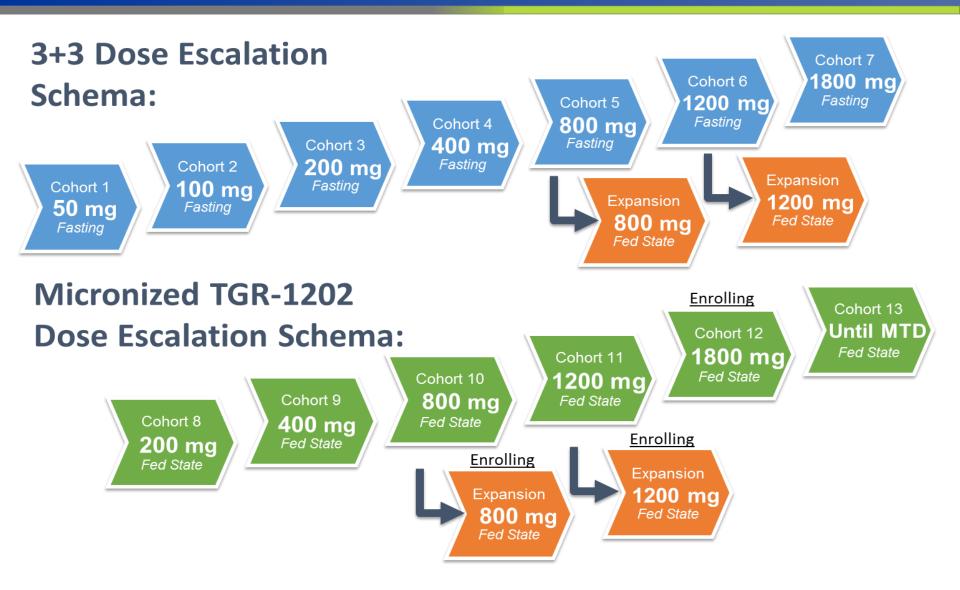
- Well tolerated with minimal IRR complications
- Promising activity in both rituximab relapsed and rituximab refractory patients across all histologies
- Interesting activity in MZL—one rituximab refractory patient transition from hospice to durable (2+ year) Complete Response
- 11 of 30 evaluable patients remained on study >1 year with no complications (2 patients on study >2 years)

TGR-1202, a Novel Once Daily PI3Kδ Inhibitor, Demonstrates Clinical Activity with a Favorable Safety Profile, Lacking Hepatotoxicity, in Patients with Chronic

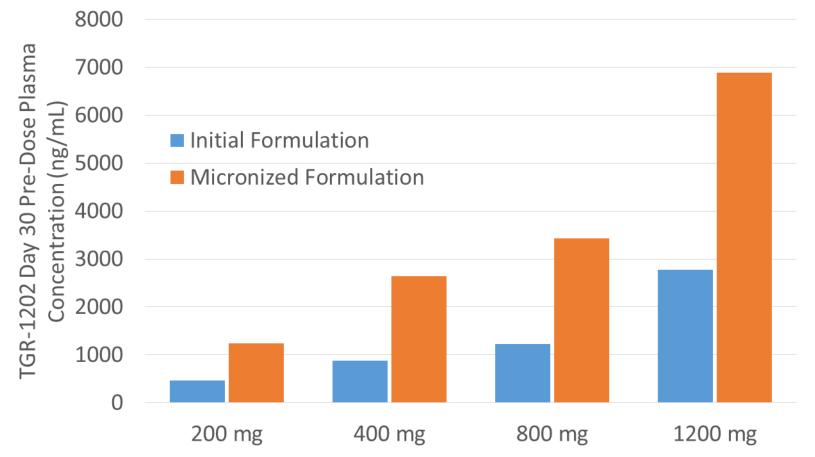

Lymphocytic Leukemia and B-Cell Lymphoma

Manish R. Patel, MD

Howard A. Burris III, MD^{1,2}, Manish R. Patel, MD^{1,3}, Danielle M. Brander, MD⁴, Owen A. O'Connor, MD, PhD⁵, Changchun Deng, MD, PhD⁵, Timothy S. Fenske, MD⁶,
Martin Gutierrez, MD⁷, Suzanne Jones, PharmD¹, John Kuhn, PharmD⁸, Hari P. Miskin, MS⁹, Peter Sportelli⁹, Swaroop Vakkalanka, PhD¹⁰ and Ian Flinn^{1,11}


¹Sarah Cannon Research Institute, Nashville, TN; ²Tennessee Oncology, PPLC, Nashville, TN; ³Florida Cancer Specialists, Ft.
 Myers, FL; ⁴Duke University Medical Center, Durham, NC; ⁵Columbia University Medical Center, New York, NY; ⁶Medical College of Wisconsin, Milwaukee, WI; ⁷John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ;
 ⁸University of Texas Health Science Center at San Antonio, San Antonio, TX; ⁹TG Therapeutics, Inc., New York, NY; ¹⁰Rhizen Pharmaceuticals SA, La Chaux-de-Fonds, Switzerland; ¹¹Tennessee Oncology, PLLC, Nashville, TN

TGR-1202: A Next Generation, Once Daily PI3Kδ Inhibitor


- Unique structure of TGR-1202 contributes to:
 - An extended half-life and accumulation that enables once-daily dosing
 - Differentiated safety profile from other PI3Kδ inhibitors in development, notably absent of hepatic toxicity to date¹

Phase I Single Agent Study of TGR-1202

Single Agent TGR-1202 Pharmacokinetics

Initial Formulation (Fasting) vs. Micronized Formulation (Fed State)

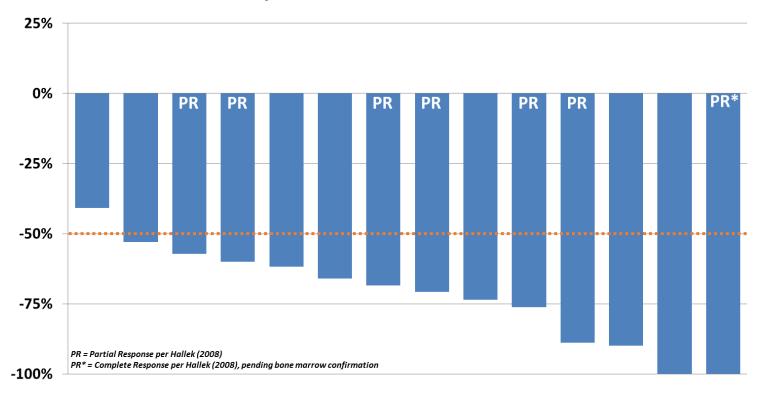
Burris et al, ASH 2014

TGR-1202-101: Demographics

Evaluable for Safety (n) 55			
Evaluable for Efficacy (n)	4	43	
Median Age, years (range)	62 (22	. – 82)	
Male/Female	40/15		
	18 CLL	2 MCL	
Histology	15 FL	2 MZL	
Histology	9 HL	1 HCL	
	7 DLBCL	1 WM	
ECOG 0/1/2	19/3	35/1	
Prior Therapies, median (range)	3 (1 – 14)		
Patients with ≥ 3 Prior Therapies (%)	with ≥ 3 Prior Therapies (%) 28 (51%)		
Patients with prior Rituximab-Chemo	44 (8	30%)	

Efficacy subset includes all patients treated with 800 mg of initial formulation or higher, and any micronized dose level. Not evaluable: 8 patients treated at less than 800 mg initial formulation, 1 Too Early To Evaluate (1200 mg micronized Fed), 2 Non-Compliant (both at 1800 mg Fasted), 1 Failed Inclusion/Exclusion (Richter's Transformation prior to entry)

Safety of TGR-1202

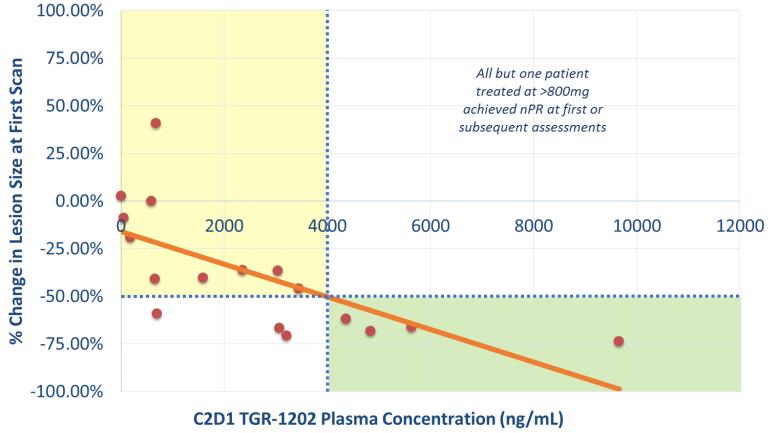

All Events (All Causality) in >10% (n=55)						
	All Gra	ades	Grade	3/4		
	Events	%	Events	%		
Diarrhea	17	31%	1	2%		
Nausea	16	29%	-	-		
Fatigue	14	25%	-	-		
Cough	13 24%		-	-		
Anorexia	11	20%	-	-		
Headache	10	18%	-	-		
Vomiting	10	18%	-	-		
Rash	9	16%	2	4%		
Neutropenia	8	15%	7	13%		
Constipation	6 11%		-	-		
Dyspnea	6 11%		2	4%		
Thrombocytopenia	6	11%	4	7%		

No drug related hepatotoxicity, colitis, or pneumonitis observed to date

Only 2 patients (< 4%) have come off study due to an adverse event (one unrelated, one possibly related)

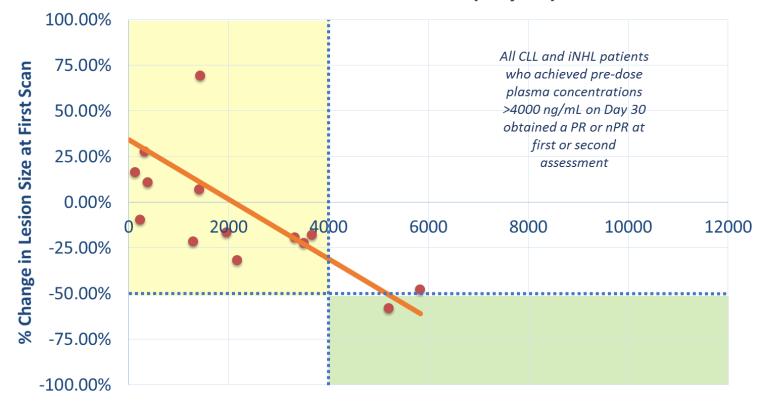
Single Agent TGR-1202 Efficacy in CLL

Best Percent Change from Baseline in Nodal Size Evaluable CLL Patients Treated at ≥800 mg of Initial Formulation or any Dose of Micronized Formulation


- 93% of CLL patients (13/14) treated at 800 mg or higher achieved a nodal PR (median nodal reduction of 70%)
- Nodal reductions have been shown to improve with time on TGR-1202

Burris et al, ASH 2014

TGR-1202 – Plasma Concentrations - CLL


Exposure Response Relationship in CLL

Pre-Dose Plasma Concentration (Day 30) vs. First Scan Measurement (Day 60)

TGR-1202 – Plasma Concentrations - NHL

Exposure Response Relationship in Indolent Non-Hodgkin's Lymphoma Pre-Dose Plasma Concentration (Day 30) vs. First Scan Measurement (Day 60)

C2D1 TGR-1202 Plasma Concentration (ng/mL)

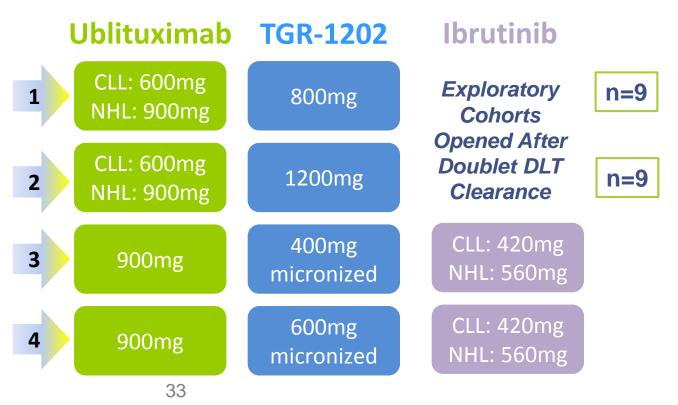
TGR-1202 - Conclusions

- 93% (13/14) nodal response rate in relapsed/refractory CLL at doses ≥ 800 mg of initial formulation or any dose of micronized formulation.
 - 50% (7/14) of these patients achieved a partial response per iwCLL (Hallek 2008) criteria
- Well tolerated; **no drug related hepatic toxicity or colitis** reported to date; differentiated adverse event profile supportive of combination therapy
- Exposure response trend noted in both CLL and NHL, with higher plasma TGR-1202 exposures correlating with increased nodal responses, with all CLL and iNHL patients who achieved pre-dose plasma concentrations on Day 30 in excess of 4000 ng/ml obtaining a PR or nPR at first or second assessment
- No MTD has been achieved; dose escalation continues with the micronized formulation


Nathan Fowler, MD

Associate Professor Lead, New Drug Development MD Anderson Cancer Center

Matthew Lunning, DO


Assistant Professor University of Nebraska Medical Center

TG-1101 & TGR-1202 – Trial Design

- Enrolling All Types of B-NHL and CLL
- No limit on prior therapies
- Allows for prior BTK and/or PI3Kδ inhibitors

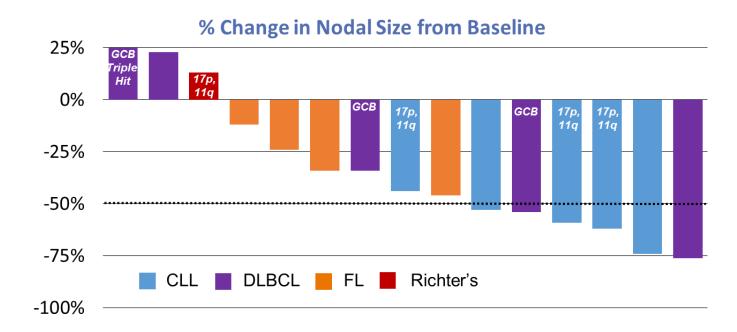
 3+3 Dose Escalation

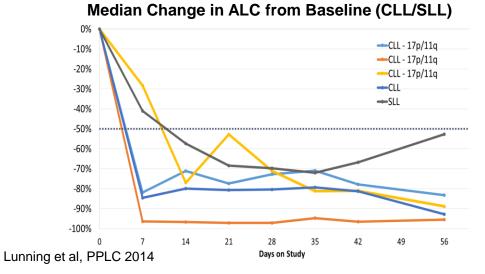
Phase I/Ib Study of TG-1101 + TGR-1202 Safety Data Presented at Pan Pacific 2014

Heavily Pre-Treated Population					
	# of Priors	Prior Therapies	Rel/Ref		
CLL*	2	FCR, Chlorambucil	REL		
CLL*	1	FCR	REL		
CLL*	1	FCR	REL		
CLL	2	FCR, RTX, CC-292	REL		
SLL	3	R-CHOP, R-Benda, RTX	REL		
Richter's	1	FCR	REL		
FL	8	RTX, RTX+CHL(x 2), Zevalin, R-CHOP, R-Benda (x 2), Prednisone	REF		
FL	6	CHL, RTX (x 2), R-CVP, Zevalin, R-Benda	REL		
FL	5	RTX, R-CHOP, R-ICE, R-EPOCH, SCT	REF		
FL	3	RTX (x 2), R-ICE	REL		
DLBCL	1	R-CHOP	REL		
DLBCL[†]	2	R-CHOP, R-ICE	REF		
DLBCL [†]	3	RTX, R-CHOP, R-Gem/Oxaliplatin	REF		
DLBCL [†]	6	RTX (x 2), R-CHOP, Benda (x 2), ICE	REF		
DLBCL	2	R-CHOP, R-Benda	REL		

Heavily Pre-Treated Population

- Heavily pre-treated patients:
 - Median 3 prior lines, and median of 2 prior rituximab regimens


Phase I/Ib Study of TG-1101 + TGR-1202 Safety Data Presented at Pan Pacific 2014


Related AE's Occurring in \geq 2 Patients (n = 21)

	Total AE's	UTX R	elated	TGR-1202	2 Related
Adverse Event	All Grades	G 1/2	G 3/4	G 1/2	G 3/4
	n (%)	n	n	n	n
Infusion Related Reaction (IRR)	10 (48%)	9	1	0	0
Neutropenia ⁺	8 (38%)	3	4	3	5
Diarrhea	6 (29%)	0	0	6	0
Nausea ⁺	6 (29%)	2	0	6	2
Hoarseness⁺	2 (10%)	1	0	2	0
Muscle Aches	2 (10%)	0	0	2	0
Fatigue ⁺	2 (10%)	1	0	2	0

- Combo of TG-1101 + TGR-1202 is well tolerated
- No drug related increases in ALT/AST observed to date

Phase I/Ib Study of TG-1101 + TGR-1202 Efficacy Data Presented at Pan Pacific 2014

- Addition of TG-1101 to TGR-1202 appears to control lymphocytosis commonly seen in CLL patients receiving BCR targeted agents.
- All patients achieved a >50% reduction in ALC by first efficacy assessment

Phase I/Ib Study of TG-1101 + TGR-1202 Efficacy Data Presented at Pan Pacific 2014

Overall Response by Lymphoma Sub-type							
Tuno	Dtc (p)	Median	PR	ORR	PD	% pts ≥ SD	
Туре	Pts (n)	Prior Rx	n (%)	n (%)	(n)	for 12 wks	
CLL/SLL	5	2 (1 – 3)	4 (80%)	4 (80%)	-	5 (100%)	
Richter's	1	1	-	-	-	1 (100%)	
FL	4	6 (3 – 8)	-	-	-	4 (100%)	
DLBCL	5	3 (1 – 6)	2 (40%)	2 (40%)	1	4 (80%)	
Total	15	3 (1 – 8)	6 (40%)	6 (40%)	1	14 (93%)	

- Of the 4 responders in CLL/SLL, 2 were in high risk both 17p del and 11q del
- Remaining CLL patient is a high risk patient with a 44% reduction at first assessment
- Encouraging early signal in DLBCL, with 40% ORR
- Expect responses to improve over time

Questions?

