

Introduction

Michael S. Weiss Executive Chairman & CEO

Forward Looking Safe Harbor Statement

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. These statements are often, but not always, made through the use of words or phrases such as "anticipates", "expects", "plans", "believes", "intends", and similar words or phrases. Such statements involve risks and uncertainties that could cause TG Therapeutics' actual results to differ materially from the anticipated results and expectations expressed in these forward-looking statements. These statements are only predictions based on current information and expectations and involve a number of risks and uncertainties. Actual events or results may differ materially from those projected in any of such statements due to various factors, including the risks and uncertainties inherent in clinical trials, drug development, and commercialization. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof. All forward-looking statements are qualified in their entirety by this cautionary statement and TG Therapeutics undertakes no obligation to update these statements, except as required by law.

AGENDA

Торіс	Presenter
Welcome / Introductions	Michael S. Weiss Chief Executive Officer, TG
Umbralisib Differentiation	Owen O'Connor, MD, PhD Columbia University Medical Center
Current Treatment Landscape for Indolent Lymphoma Evolution of Treatment Landscape with PI3K Delta	Loretta Nastoupil, MD MD Anderson Medical Center
Future Combinations:U2 plus Ibrutinib Data	Loretta Nastoupil, MD MD Anderson Medical Center
Future Combinations:U2 plus BendamustineU2 plus Pembrolizumab	Matthew Lunning, DO University of Nebraska Medical Center
Question & Answer Session	John Pagel, MD, PhD, Swedish Cancer Institute
Closing Remarks	Michael S. Weiss Chief Executive Officer, TG

Five – Three – One 5 – Pivotal Programs

- 3 Diseases (CLL, NHL and MS)
- 1 Goal (Bring Novel Medicines to Patients)

All fully enrolled, waiting for data

Early Pipeline Update

Pipeline Update

- TG-1501: Anti PD-L1 Monoclonal Antibody

- Phase 1 dose escalation complete
- Commencement of heme focused cohort in 1Q 2019

TG-1701: BTK Inhibitor

- TG sponsored Phase 1/2 trial currently enrolling in Australia
- The first two cohorts fully enrolled
 - First patient enrolled, a rel/ref Mantle Cell Lymphoma (MCL), achieved a PR at the first assessment

• TG-1801: CD47-CD19 Bispecific Antibody

Targeting Phase 1 to commence in 1Q 2019

5

Chronic Lymphocytic Leukemia

U2 + PDL1 (BTK Ref/RT) U2 + BTK U2 + VX U2 + BTK+ VX U2 + BTK+ VX U2 + CD47/CD19

Follicular Lymphoma

U2 + PDL1 U2 + BTK U2 + CD47/CD19 U2 + CD47/CD19 + PDL1 <u>MZL</u>

U2 + PDL1 U2 + BTK U2 + CD47/CD19 U2 + CD47/CD19 + PDL1

Aggressive Lymphoma (DLBCL & <u>MCL</u>

U2 + PDL1 U2 + BTK U2 + CD47/CD19 U2 + CD47/CD19 + PDL1

Umbralisib Differentiation

Owen A. O'Connor, MD, PhD Columbia University Medical Center

DECIPHERING THE MECHANISTIC SIMILARITIES AND DIFFERENCES AMONG THE PI3 KINASE INHIBITORS

Owen A. O'Connor, M.D., Ph.D. American Cancer Society Professor

Founding Director, Center for Lymphoid Malignancies Professor of Medicine and Developmental Therapeutics The New York Presbyterian Hospital Columbia University College of Physicians and Surgeons New York, N.Y.

> American Society of Hematology 2018 San Diego, CA

Columbia University Medical Center

lational Cancer Institute

NewYork-Presbyterian
 The University Hospital of Columbia and Cornell

DECIPHERING THE MECHANISTIC SIMILARITIES AND DIFFERENCES AMONG THE PI3 KINASE INHIBITORS OBSERVATIONS AND QUESTIONS

OBSERVATIONS

- The PI3K pathway is undisputedly one of the most important 'driver' pathways across all of cancer – regulating major oncogenes like c-myc, bcl-2 and cyclin D1, among others
- The target is not a simple single protein/gene target. Like the proteasome and HDAC there is enormous family diversity
- Inhibitors of the pathway have important clinical activity in lymphoid malignancies, but that activity is not uniform across all subtypes.
- Some inhibitors have demonstrated unusual adverse events manifest as GVHD-like toxicity and increased infections.

QUESTIONS

- Are there differences in the on- or off-target affects that might account for differences in toxicity and/or clinical activity? How do we interpret the balance between potency and selectivity?
- Are all agents in the class 'equivalent' with regard to toxicity, efficacy and drug:drug interactions? How might differences in molecular pharmacology provide clues into the deciphering those differences?
- How do we deconvolute the immunologic influences among the compounds? Are they even different?

THE PI3 KINASE INHIBITORS SHARE SIMILARITIES & DIFFERENCES

- Similarities in the upper structural motif differences in the lower structural motif
- Subtle pharmacologic and target difference

KINOME SCAN SPECIFICITY OF 3 PI3K

DiscoverRx Kinome Scan against a panel of 442 kinases

KINOME SCAN FOCUS ON PI3K ONLY – DIRECT COMPARISON OF SPECIFICITY

Is it possible these subtle differences explain some of the clinical observations?

DiscoverRx Kinome Scan

STRUCTURES AND DISSOCIATION CONSTANTS (KD) AGAINST CLASS I PI3K ISOFORMS OF UMBRALISIB (TGR-1202), IDELALISIB, AND DUVELISIB

CLINICALLY THE PI3K INHIBITORS APPEAR TO HAVE COMPARABLE ACTIVITY ACROSS CLL AND INHL

Brown et al, iwCLL 2013Gopal et al, NEJM 2014Westin et al, 2014O'Brien et al, ASH 2014Infinity PR, 2016O'Connor et al, EHA 2016O'Connor et al, ASH 2015O'Connor et al, EHA 2016

- Comparable activity across
 CLL and iNHL
- Small numbers across multiple studies so lots of population variability.

.....THOUGH THERE ARE SUBSTANTIAL DIFFERENCES IN TOLERABILITY ACROSS THE PI3K INHIBITORS

Brown et al, iwCLL 2013; O'Brien et al, ASH 2014; O'Connor et al, ASH 2015; Gopal et al, NEJM 2014; Infinity PR, 2016; O'Connor et al, EHA 2016; Jones et al, ASCO 2016; Coutre et al, 2015; Flinn et al, Blood

COPANLISIB LABORATORY ABNORMALITIES (20% OF PATIENTS)

Laboratory Parameter	Copanlisib Monotherapy (N = 168)			
	Any Grade N (%)	Grade 3 N (%)	Grade 4 N (%)	
Anemia	130 (78%)	7 (4%)	0	
Lymphopenia	126 (78%)	43 (27%)	4 (2%)	
Leukopenia	118 (71%)	30 (18%)	3 (2%)	
Thrombocytopenia	109 (65%)	11 (7%)	3 (2%)	
Neutropenia	104 (63%)	20 (12%)	25 (15%)	
Hyperglycemia	160 (95%)	72 (43%)	9 (5%)	
Hypertriglyceridemia	74 (58%)	6 (5%)	0	
Hypophosphatemia	72 (44%)	24 (15%)	0	
Hyperuricemia	42 (25%)	40 (24%)	2 (1%)	
Serum lipase increase	34 (21%)	11 (7%)	2 (1%)	

DIFFERENTIAL REGULATION BY PI3KAI ON T REGS NO REAL DIFFERENCE ON EFFICACY

treated with umbralisib, duvelisib and idelalisib

DIFFERENTIAL REGULATION BY PI3KAI ON T REGS

Maharaj, Pinilla et al iwCLL 2017

DIFFERENTIAL REGULATION BY PI3KAI ON T REGS

Maharaj, Pinilla et al iwCLL 2017

hepatotoxicity

EFFECT OF CK1E INHIBITION ON MURINE CLL T-CELLS

Umbralisib uniquely inhibited CK1ε in euTCL1 T cells dose-dependently
 CK1ε inhibition by umbralisib may offer an explanation for less anti-Treg effects

Umbralisib, A Novel PI3Kδ and Casein Kinase-1ε Inhibitor, in Relapsed or Refractory Chronic Lymphocytic Leukemia and Lymphoma: An Open-Label, Phase 1, Dose-Escalation, First-in-Human Study

Howard A Burris III, Ian W Flinn, Manish R Patel, Timothy S Fenske, Changchun Deng, Danielle M Brander, Martin Gutierrez, James H Essell, John G Kuhn, Hari P Miskin, Peter Sportelli, Michael S Weiss, Swaroop Vakkalanka, Michael R Savona, Owen A O'Connor

THE LANCET Oncology

Burris HA, et al. Lancet Oncol. 2018 Feb 20 [Epub ahead of print].

UMBRALISIB IN RELAPSED/REFRACTORY LYMPHOID MALIGNANCIES: PATIENT DEMOGRAPHICS AND BASELINE CHARACTERISTICS

Characteristic	All patients (safety population; N=90)	MITT population (patients assessable for activity, n=73)
Age, years (range)	64 (51–72)	65 (51–71)
Sex, M:F, n (%)	57 (63) / 33 (37)	45 (62) / 28 (38)
ECOG PS (range)	1 (0 – 1)	1 (0 – 1)
Histology, n (%) CLL B-cell NHL FL DLBCL MCL MZL Waldenström macroglobulinemia Hodgkin lymphoma T-cell lymphoma HCL	24 (27) 22 (24) 16 (18) 6 (7) 5 (6) 3 (2) 11 (12) 2 (1) 1 (1)	20 (27) 17 (23) 13 (18) 6 (8) 5 (7) 2 (3) 9 (12) 1 (1) -
Prior therapies, n (range)	3 (2 – 5)	3 (2 – 5)
Patients receiving ≥3 prior therapies, n (%)	52 (58)	41 (56)
Refractory to prior therapy, n (%)	44 (49)	36 (49)

Burris HA, et al. Lancet Oncol. 2018 Feb 20 [Epub ahead of print].

UMBRALISIB ADVERSE EVENTS OCCURRING >10% OF PATIENTS: SINGLE AGENT PHASE 1

Adverse event, n (%)	All grades		Grades 3 or 4	
Diarrhea	39	43%	3	3%
Nausea	38	42%	1	1%
Fatigue	28	31%	3	3%
Vomiting	25	28%	-	-
Cough	19	21%	-	-
Headaches	19	21%	2	2%
Rash	17	19%	4	4%
Constipation	14	16%	1	1%
Decreased Appetite	14	16%	-	-
Hypokalemia	14	16%	4	4%
Anemia	13	14%	8	9%
Neutropenia	13	14%	12	13%
Arthralgia	12	13%	-	-
Dyspnea	12	13%	4	4%
Pyrexia	12	13%	-	-
Upper Respiratory Tract Infection	12	13%	-	-
Abdominal Pain	12	13%	-	-
Dizziness	11	12%	-	-
Insomnia	11	12%	-	-
Thrombocytopenia	10	11%	6	7%
Abdominal Distension	10	11%	-	-

- Grade 3 or 4 diarrhea 3%
- Essentially no cases of colitis
- No cases of pneumonitis
- No cases of Grade 5
 toxicity
- Infections rare
- Median time on treatment now about 6 months

UMBRALISIB IN RELAPSED/REFRACTORY LYMPHOID MALIGNANCIES: TREATMENT DISCONTINUATION

• Discontinuation of umbralisib due to treatment related adverse events was uncommon, occurring in 6 (7%) of patients

Reason for Discontinuation	n (%)	Grade
Colitis*	2 (2)	Grade 3 – Both
Elevated liver function tests	2 (2)	Grade 1 – 1; Grade 4 – 1
Diarrhea	1 (1)	Grade 2
Fatigue	nized RP2D of 800 me	_{/day} Grade 3

- Dose delays due to adverse events (n=39)
 - Median interruption time: 2 days (IQR 1–7)
- Dose reductions to the next lower dose (n=15)
 - Fatigue (n=5), neutropenia (n=4), abnormal LFTs (n=3), and rash, worsened dysgeusia, diarrhea, neutropenic fever, anemia, arthralgia, nausea and vomiting (n=1 each†)

UMBRALISIB IN RELAPSED/REFRACTORY LYMPHOID MALIGNANCIES: CLINICAL EFFICACY

• Responses according to disease type (N=73):

Disease	Objective response, n (%)	CR, n (%)	PR, n (%)	PR-L, n (%)	Duration of Response , mo (n)
CLL, n=20	17 (85)	-	10 (50)*	7 (35)	13.4 (16)
CLL, del 17p/del 11q,n=8	6 (75)	-	4 (50%) [*]	2 (25%)	-
FL, n=17	9 (53)	2 (12)	7 (41)	-	9.3 (9)
DLBCL, n=13	4 (31)	-	4 (31)	-	6.4 (4)

-HL: 1 CR, 4 SD, 4 PD; MZL: 1 PR, 4 SD; Waldenström macroglobulinemia: 2 SD; MCL: 1 PR, 4 SD, 1 PD.*iwCLL 2008

- Umbralisib was clinically active in most treated patients (N=90)
 - 56 of 90 (62%) study patients had reductions in disease burden by CT scan
 - ORR 37% (PR 33%) amongst all evaluable patients
- · Responses increased over time amongst patients with CLL and iNHL

UMBRALISIB IN RELAPSED/REFRACTORY LYMPHOID MALIGNANCIES: BEST PERCENTAGE CHANGE FROM BASELINE IN DISEASE BURDEN

- 53% (9 of 17) Overall Response Rate in patients with Follicular Lymphoma (FL), including 2 patients, 12%, who achieved a Complete Response (CR)
 - Mean duration of response was 9.3 months (3.6 15.1) in FL patients

mITT, modified intention-to-treat. Burris HA, et al. *Lancet Oncol.* 2018 Feb 20 [Epub ahead of print].

CONCLUSIONS

- While generally selective, there are differences in the relative selectivity of agents in the class. The marked differences among the agents in the clinic are <u>unlikely explained</u> by differences in potency all are highly selective potent low nanomolar inhibitors of PI3K δ (+/- γ)
- □ Is it possible other off-target (**PI3K** +/- γ) effects contribute to produce some of the GVHD like toxicities?
- Complementary synergistic inhibition of other kinases (ex CK-1) may help explain some of the differences in toxicity and efficacy.
- Drug : drug interactions (ex: with proteasome inhibitors), albeit limited, appear <u>markedly different</u> and requires further work to understand all contributing factors
- □ Clinically, there are differences in toxicity in the preclinical setting there are <u>marked differences on T-regs and cytokine effects</u>
- A significant investment in appreciating differences at the SCIENTIFIC level is required in order to leverage the advantages of the available agents

Columbia University Medical Center

Comprehensive Cancer Inter Designated by the tional Cancer Institute

THANK YOU!

Columbia University Medical Center

A Comprehensive Cancer Center Designated by the National Cancer Institute NewYork-Presbyterian
 The University Hospital of Columbia and Cornell

TG Therapeutics

iNHLTreatment Landscape & Future Plans for Novel Agents

Loretta Nastoupil, MD MD Anderson Medical Center

Follicular Lymphoma

- Indolent (low grade)
 NHL
 - Often asymptomatic
 - Prolonged natural history
 - Heterogeneous treatment options
 - Treatable, but incurable with standard therapy

The Natural History of FL

American Society of Hematology

Treatment Options Relapsed/Refractory FL in the US

Agent	Issues
Bendamustine; B-G	BR used upfront
Idelalisib/ Duvelisib	Toxicities
Copanlisib	Route/schedule
R ²	Relapsed, not refractory; RELEVANCE/ AUGMENT

Idelalisib in R/R FL

Idelalisib is effective in early relapse FL

35

Idelalisib Toxicity Profile

AEs	Any grade N, %	Grade ≥3 N, %
Diarrhea	54 (43%)	16 (13%)
Fatigue	37 (30%)	2 (2%)
Nausea	37 (30%)	2 (2%)

Transaminases, n (%)	Grade 1- 2	Grade 3	Grade 4	Any grade
ALT or AST elevated	44 (35%)	13 (10%)	3 (2%)	60 (48%)

Copanlisib in R/R FL

*1 patient classed by the investigator as having FL, but who was reclassified by independent assessment as having diffuse large B-cell lymphoma, is not shown in the plot (change in lesions: increase of 250%) SD, stable disease
Toxicity Profile of Copanlisib

Incidence of TEAEs Occurring in <a>10% of Patients	Any grade	Grade 3	Grade 4
N (%)	(N = 104)	(N = 104)	(N = 104)
Hyperglycemia	50 (48.1)	33 (31.7)	9 (8.7)
Diarrhea	36 (34.6)	6 (5.8)	0
Hypertension	31 (29.8)	24 (23.1)	0
Decreased neutrophil count	31 (29.8)	6 (5.8)	19 (18.3)
Fatigue	29 (27.9)	0	0
Fever	28 (26.9)	5(4.8)	0
Decrease platelet count	26 (25.0)	7 (6.7)	1 (1.0)
Ling infection	24 (23.1)	15 (14.4)	3 (2.9)
Oral muscocitis	24 (23.1)	4 (3.8)	0
Nausea	23 (22.1)	0	0
Upper respiratory tract infection	20 (19.2)	3 (2.9)	0
Cough	17 (16.3)	0	0
Anemia	16 (15.4)	5 (4.8)	0
Constipation	14 (13.5)	0	0
Vomiting	14 (13.5)	0	0
Bronchial infection	13 (12.5)	1 (1.0)	0
Headache	13 (12.5)	1 (1.0)	0
Musculo-popular rash	11 (10.6)	1 (1.0)	0
Dyspnea	11 (10.6)	4 (3.8)	0
Flu-like symptoms	11 (10.6)	1 (1.0)	0
Anorexia	11 (10.6)	0	0
Skin infection	11 (10.6)	0	0

1. Dreyling MH., et al. J Clin Oncol 35, 2017 (suppl; abstr 7535)

Duvelisib in R/R FL

	OVERALL N = 129	FL N = 83	SLL N = 28	MZL N = 18
ORR per IRC, %	46	41	68	33
P-value	p=0.0001*			
95% CI	(37-55)			
Complete Response	0	0	0	0
Partial Response	46	41	68	33
ORR per Investigator, %	58	53	79	50
Complete Response	2	1	4	0
Partial Response	57	52	75	50

* The study met the primary endpoint (p=0.0001 against null hypothesis that ORR was \leq 30% per IRC)

83% of pts had reduction in target lymph nodes (per IRC)

Toxicity Profile of Duvelisib

Preferred Term	All Grades	Gr 3	Gr 4
* ≥ Gr 3 AE occurring ≥ 5% of pts	%	%	%
Diarrhea *	44	14	1
Neutropenia *	32	9	14
Nausea	29	2	0
Cough	24	0	0
Fatigue *	24	5	0
Anemia *	23	10	2
Thrombocytopenia *	21	5	5
Pyrexia	21	0	0
Rash	18	4	0
Vomiting	17	4	0
Peripheral edema	15	2	0
Decreased appetite	15	1	0
Headache	15	0	0
Other Common \geq Gr 3 AEs (\geq 5% of pts)			
Febrile neutropenia	9	7	2
Lipase increased	9	3	3
ALT increased	14	5	1

S American Society *of* Hematology

5F9 is a First-in-class Macrophage Immune Checkpoint Inhibitor **Targeting CD47**

Control mAb: No Phagocytosis

Anti-CD47 mAb: Phagocytosis

Macrophages Cancer cells

- 5F9 is a humanized IgG4 antibody against CD47, a don't eat me signal, that induces tumor cell phagocytosis
- 5F9 eliminates cancer cells through blockade of CD47 to its binding partner SIRP-alpha on macrophages
- Cancer cells express pro-phagocytic (eat me) signals while most normal cells do not; this allows 5F9 to selectively eliminate cancer cells
- 5F9/CD47 blockade induces anti-tumor activity in over 25 tumor models

Anti-tumor Activity is Observed with 5F9 and Rituximab in Relapsed or Refractory NHL

- The objective response rate across all patients is 50% according to Lugano criteria
- Multiple CRs have been observed in both DLBCL and FL Phase 1b populations
- Efficacy is observed in rituximab-refractory patients

42

Nivolumab in R/R NHL

- PD-L1 expression is heterogeneous among lymphoma subtypes¹
- Genetic alterations of the 9p24.1 locus is less frequently observed among NHL subytpes²
- Avoiding immune surveillance by modulating T cell activity may occur through expression of PD-L1/PD-L2 in the tumor microenvironment³

Table 3. Efficacy Results						
Tumor	OR, No. (%)	CR, No. (%)	PR, No. (%)	SD, No. (%)	Median PFS, Weeks (95% CI)	
B-cell lymphoma (n = 31)	8 (26)	3 (10)	5 (16)	16 (52)	23 (7 to 44)	
DLBCL (n = 11)	4 (36)	2 (18)	2 (18)	3 (27)	7 (6 to 29)	
FL (n = 10)	4 (40)	1 (10)	3 (30)	6 (60)	NR (7 to NR)	
Other B-cell lymphoma (n = 10)	0	0	0	7 (70)	11 (3 to 39)	
T-cell lymphoma (n = 23)	4 (17)	0	4 (17)	10 (43)	10 (7 to 33)	
MF (n = 13)	2 (15)	0	2 (15)	9 (69)	10 (7 to 35)	
PTCL $(n = 5)$	2 (40)	0	2 (40)	0	14 (3 to NR)	
Other CTCL $(n = 3)$	0	0	0	0	7 (6 to NR)	
Other non-CTCL $(n = 2)$	0	0	0	1 (50)	10 (2 to 18)	
Multiple myeloma (n = 27)	1 (4)	1 (4)*	0	17 (63)	10 (5 to 15)	

Abbreviations: CR, complete response; CTCL, cutaneous T-cell lymphoma; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MF, mycosis fungoides; NR, not reported; OR, objective response; PFS, progression-free survival; PR, partial response; PTCL, peripheral T-cell lymphoma; SD, stable disease. *CR was obtained after radiotherapy. SD was the best response to nivolumab.

Positive PD-L1 expression among non malignant cells within the follicular lymphoma microenvironment³

S American Society of Hematology

¹Chen. Clin Cancer Res. 19:3462-3473, 2013;²Green. Blood. 116:3268-3277,2010 ³Lesokhin. JCO. 2016;34(23):2698-2704.

43

Conclusions

- Relapsed FL is heterogeneous.
- Goals of therapy remain the same, achieve a quality remission without significant toxicity or negative impact on QOL.
- Targeting the microenvironment appears to be a promising strategy.
- The most effective sequencing of therapy is not well understood.
- Enrichment of high risk patients on prospective clinical trial is advisable.

Current Treatment Landscape Marginal Zone Lymphoma

<u>Nodal</u>

- Rituximab + Chemo
 - Bendamustine
 - CHOP
 - Fludarabine
- Ibrutinib

Ibrutinib, First FDA-Approved Therapy for Marginal Zone Lymphoma

It is indicated in patients who require systemic therapy and have received at least one prior anti-CD20-based therapy

Date: 23 Jan 2017

Topic: Haematologic malignancies / Anticancer agents & Biologic therapy

On 19 January, 2017, the US Food and Drug Administration (FDA) has approved ibrutinib (IMBRUVICA[®]) for the treatment of patients with marginal zone lymphoma (MZL) who require systemic therapy and have received at least one prior anti-CD20-based therapy. Accelerated approval was granted for this indication based on overall response rate (ORR). Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial. Ibrutinib is jointly developed and commercialised by Janssen Biotech, Inc., and Pharmacyclics LLC, an AbbVie company.

Ibrutinib in R/R MZL

No. at Risk 60 59 53 51 49 47 30 21 11

2

Noy et al. Blood 2017;129:2224-2232

Umbralisib (PI3Kδ/CK1ε) Phase I study in Relapsed/Refractory lymphoid malignancies

Umbralisib (PI3Kδ/CK1ε) Phase I study in Relapsed/Refractory lymphoid malignancies

AE, n (%)	All Grades	Grade 1-2	Grade 3	Grade 4
Diarrhea	39 (43)	36 (40)	3 (3)	-
Nausea	38 (42)	37 (41)	1 (1)	-
Fatigue	28 (31)	25 (28)	3 (3)	-
Vomiting	25 (28)	25 (28)	-	-
Cough	19 (21)	19 (21)	-	-
Headache	19 (21)	17 (19)	2 (2)	-
Rash	17 (18)	13 (14)	4 (4)	-
Constipation	14 (16)	13 (14)	1 (1)	-
Decreased appetite	14 (16)	14 (16)	-	-
Hypokalemia	14 (16)	10 (11)	4 (4)	-
Anemia	13 (15)	5 (6)	8 (9)	-
Neutropenia	13 (15)	1 (1)	9 (10)	3 (3)

- Most common AEs were diarrhea (43%), nausea (42%) and fatigue 31%)
- Most diarrhea events were grade 1 (n=30; 77%) and resolved without intervention
- ALT/AST increase uncommon, occurring in 7 (8%) of patients (3% Grade ≥3)
- AEs of note occurring <15% of patients include pneumonia (8%, Grade 3/4 3%), febrile neutropenia (3%, Grade 4 1%), and colitis (2%)

Burris HA, et al. Lancet Oncol. 2018 Feb 20 [Epub ahead of print].

TG Therapeutics

The Future of Combination Therapy U2 + Ibrutinib

Lorettta Nastoupil, MD

Tolerability and activity of chemo-free triplet combination of umbralisib (TGR-1202), ublituximab, and ibrutinib in patients with advanced CLL and NHL

Loretta Nastoupil, MD¹, Matthew A. Lunning, DO², Julie M. Vose, MD², Marshall T. Schreeder, MD³, Tanya Siddiqi, MD⁴, Christopher R. Flowers, MD⁵, Jonathon B. Cohen, MD⁵, Jan A. Burger, MD¹, William G. Wierda, MD¹, Susan O'Brien, MD⁶, Peter Sportelli⁷, Hari P. Miskin, MS⁷, Michelle A. Purdom, RN, PhD⁷, Michael S. Weiss⁷ and Nathan H. Fowler, MD¹

¹MD Anderson Cancer Center, Houston, TX; ²University of Nebraska Medical Center, Omaha, NE; ³Clearview Cancer Institute, Huntsville, AL; ⁴City of Hope National Medical Center, Duarte, CA; ⁵Emory University/Winship Cancer Institute, Atlanta, GA; ⁶University of California Irvine Cancer Center, Orange, CA; ⁷TG Therapeutics, Inc., New York, NY

> Presented at the 14th International Conference on Malignant Lymphoma Lugano, Switzerland ● June 14 – 17, 2017

	All Grades Grad			e 3/4
Adverse Event	Ν	%	Ν	%
Diarrhea	18	47%	1	3%
Fatigue	18	47%	-	-
Dizziness	14	37%	1	3%
Insomnia	13	34%	-	-
Nausea	13	34%	-	-
Neutropenia	12	32%	7	18%
Cough	12	32%	-	-
Infusion related reaction	12	32%	-	-
Thrombocytopenia	11	29%	3	8%
Pyrexia	11	29%	1	3%
Rash	11	29%	1	3%
Anemia	10	26%	1	3%
Sinusitis	9	24%	-	-
Dyspnea	8	21%	1	3%
Stomatitis	8	21%	1	3%

- 1 DLT (reactivated varicella zoster) occurred CLL cohort level 1. No other DLT's were observed.
- Diarrhea majority Gr. 1 (32%) and Gr. 2 (13%), with no Gr. 4 event reported.
- Pneumonia (11% Gr. 3/4) and neutropenia were the only Gr. 3/4 AE's in >10% of patients
- Two patients discontinued due to an AE (sepsis and pneumonia)
- Median time on study 11.1 months (range 0.4 – 30+ months)

Efficacy: Waterfall Plot

Best Percent Change from Baseline in Disease Burden

Efficacy: Time on Study

Conclusions

- With a median follow up of 11.1 months, the combination of ublituximab, umbralisib (TGR-1202), and ibrutinib appears to be well tolerated and demonstrates favorable efficacy in advanced CLL and NHL.
- The safety profile of this novel combination was favorable suggesting that TGR-1202 may be safely combined with targeted agents to overcome mechanisms of resistance.
- Many patients continue on therapy, with approximately half beyond 1 year and are experiencing a manageable safety profile.

U2 + Bendamustine

Matthew Lunning, DO University of Nebraska Medical Center

U2 + Bendamustine: Demographics

Evaluable for Safety (n)	33		
Evaluable for Efficacy ⁺ (n)	24		
Median Age, years (range)	68 (31	- 81)	
Male/Female	20/13		
Histology	DLBCL	23	
пізіоюду	FL	10	
ECOG, 0/1/2	7/24/2		
Prior Therapy Regimens, median (range)	2 (1 – 6)		
Patients with ≥ 3 Prior Therapies, n (%)	10 (30%)		
Refractory to Prior Therapy, n (%)	21 (64%)		
Refractory to Rituximab, n (%)	20 (6	51%)	

17/23 (74%) DLBCL patients refractory to immediate prior therapy

Lunning et al, ICML 2017

U2 + Bendamustine: Safety

Advarsa Evant	All Grades		Grade 3/4	
Adverse Event	Ν	%	Ν	%
Diarrhea	12	36%	3	9%
Decreased appetite	9	27%	1	3%
Nausea	8	24%	1	3%
Neutropenia	8	24%	8	24%
Asthenia	6	18%	1	3%
Hypomagnesaemia	6	18%	1	3%
Thrombocytopenia	5	15%	2	6%
Vitamin D decreased	5	15%	-	-
Hypokalemia	4	12%	3	9%
Anemia	4	12%	2	6%
Arthralgia	4	12%	-	-
Bone pain	4	12%	-	-
Hypophosphatasemia	4	12%	-	-
Infusion related reaction	4	12%	-	-
Pyrexia	4	12%	-	-
Vomiting	4	12%	-	-

- Mean time on study 6 cycles
- Growth factor support was initially restricted during Cycle 1 for DLT evaluation purposes; now allowed prophylactically
- No events of febrile neutropenia were reported

U2 + Bendamustine: Efficacy

Disposition and Duration on Study

Lunning et al. ICML 2017

U2 + Bendamustine: Efficacy

Best Percent Change From Baseline in Disease Burden

Best Overall Response Rate at Month 3

Tupo	Pts	CR	PR	ORR	SD	PD
Type	n	n (%)	n (%)	n (%)	n	n
DLBCL (Rel)	4	2 (50%)	2 (50%)	4 (100%)	-	-
DLBCL (Ref)	12	5 (42%)	1 (8%)	6 (50%)	1	5
FL (Rel)	5	3 (60%)	1 (20%)	4 (80%)	-	1
FL (Ref)	3	1 (33%)	2 (67%)	3 (100%)	-	-
Combined	24	11 (46%)	6 (25%)	17 (71%)	1	6

Patient Case Studies

FL Case Studies

- 77 y/o Male with 3 prior lines: R-Benda (refractory), R-idelalisib (refractory), and an investigational EZH2 inhibitor (refractory)
 - Attained a PR (72% reduction) at first assessment, CR by Week
 44, now ongoing for ~12+ months
- 57 y/o Male with 3 prior lines of therapy: CHOP, R-ICE, and ASCT
 - Attained a PR (88% reduction) at first response, and PETnegative CR at second assessment, ongoing for 16+ months

U2 + Bendamustine: ASH 2018 Abstract Data

Table 1

N		CR	PR	ORR	SD
		N (%)	N (%)	N (%)	N (%)
DLBCL	25	8 (32%)	4 (16%)	12 (48%)	3 (12%)
FL	13	7 (54%)	4 (31%)	11 (85%)	1 (8%)

Full Poster Presentation Tomorrow Evening!

- Date: Monday December 3, 2018
- Time: 6:00 PM 8:00 PM PT
- Abstract Number: 4197

U2 + Pembrolizumab

Mato et. Al. ASH 2018

Phase I/II Study of Umbralisib (TGR-1202) in Combination with Ublituximab (TG-1101) and Pembrolizumab in Patients with Relapsed/Refractory CLL and Richter's Transformation

Anthony R. Mato, MD MSCE¹, Jakub Svoboda, MD², Eline T. Luning Prak, MD, PhD³, Stephen J. Schuster, MD², Patricia Tsao, MD, PhD³, Colleen Dorsey, BSN, RN¹, Pamela S. Becker, MD⁴, Danielle M. Brander, MD⁵, Sunita Dwivedy Nasta, MD², Daniel J. Landsburg, MD², Cara M King, MPH², Beth Morrigan⁴, Jill Elwell⁴, Kaitlin Kennard, RN, BSN², Lindsey E. Roeker, MD¹, Andrew D. Zelenetz, MD, PhD⁶, Michelle Purdom, PhD, RN⁷, Dana Paskalis⁷, Peter Sportelli⁷, Hari P Miskin, MSc⁷, Michael S. Weiss⁷ and Mazyar Shadman, MD, MPH⁴

¹CLL Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY; ²Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; ³Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA; ⁴Fred Hutchinson Cancer Research Center, Seattle, WA; ⁵Duke Cancer Institute, Duke University Health System, Durham, NC; ⁶Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY; ⁷TG Therapeutics, Inc., New York, NY

> Presented at the 60th Annual ASH Meeting and Exposition December 1 − 4, 2018 ● San Diego, CA

• Efficacy assessed at the end of Cycles 2, 6 & 12. After Month 12, efficacy is assessed per investigator discretion.

 Efficacy assessed at the end of Cycles 2 & 4 and Q3 cycles thereafter until Month 12. After Month 12, efficacy assessed per investigator discretion.

Demographics

Chronic Lymphocytic Leukemia

Evaluable for Safety & Efficacy, n	10
Median Age, years (range)	70 (60 - 81)
Male/Female	6/4
ECOG, 0/1/2	4/6/0
Prior Therapy Regimens, median (range)	2 (1-4)
Prior BTK (ibrutinib or acalabrutinib), n (%)	6 (60%)
Refractory to prior BTK	5/6 (83%)
Refractory to immediate prior therapy, n (%)	7 (70%)
At least 1 high risk feature (del17p, del11q, TP53 <i>mut</i> , NOTCH1 <i>mut</i> or Complex karyotype)	8 (80%)
≥2 high risk features	6 (60%)
17p del/TP53 mutated, n (%)	3 (30%)
Complex Karyotype, n (%)	5 (50%)
NOTCH1/ATM/SF3B1 <i>mut,</i> n (%)	5 (50%)
IGHV Unmutated, n (%)	5 (50%)
Bulky Disease, n (%)	6 (60%)

Richter's Transformation

Evaluable for Safety, n	5
Evaluable for Efficacy [†] , n	4
Median Age, years (range)	70 (53 - 73)
Male/Female	4/1
ECOG, 0/1/2	3/1/1
Prior Therapy Regimens, median (range)	7 (2 – 9)
Prior ibrutinib	5 (100%)
Refractory to prior ibrutinib	5 (100%)
Prior idelalisib + rituximab	2 (40%)
Prior venetoclax	1 (20%)
Prior CAR-T / Allo Transplant	3 (60%)
Refractory to immediate prior therapy	5 (100%)
Bulky Disease, n (%)	5 (100%)

[†]1 RT patient is too early to evaluate.

Enrollment by Cohort						
Pembro Dose	CLL	RT	Total			
100 mg	4	3	7			
200 mg	6	2	8			

- 1 DLT at 200 mg pembro dose (transient elevated LFT resolved); MTD not reached
- Grade 3/4 LFT elevations occurred in 3 patients (20%)
- No Grade 3/4 diarrhea and no events of colitis observed
- No Grade 3/4 pembro associated autoimmune events
- Median follow-up: 15.6+ mos

Dose Modifications				
	Delay	Withdrawn		
Pembro	3	1		
Umbralisib	8	5		

Adverse Events for (All Causality) >20% (N=15)

	All Grades		Grade 3/4	
	N	%	N	%
Neutropenia	10	67%	5	33%
Pyrexia	8	53%	-	-
Decreased appetite	7	47%	-	-
Diarrhea	7	47%	-	-
Fatigue	7	47%	1	7%
Infusion related reaction	7	47%	-	-
Anemia	6	40%	1	7%
Blood alk phos increased	6	40%	-	-
Chills	6	40%	-	-
Cough	6	40%	-	-
Nausea	6	40%	1	7%
Thrombocytopenia	6	40%	2	13%
Headache	5	33%	-	-
Nasal congestion	5	33%	-	-
Peripheral Edema	5	33%	-	-
Arthralgia	4	27%	-	-
Dysgeusia	4	27%	-	-
Myalgia	4	27%	-	-

Efficacy & Tolerability: Duration of Exposure

Efficacy: ORR

Group	N	CR N (%)	PR N (%)	ORR N (%)
CLL	10	1 (10%)	8 (80%)	9 (90%)
RT	4	2 (50%)	0	2 (50%)

BTK Refractory CLL

- ORR: 80% (4/5)
- 3/4 BTK Refractory responders achieved response after U2 Induction, prior to pembro

Efficacy: PFS

Progression-Free Survival for CLL (N=10)

Time to Progression (months)

Conclusions

- Triplet combination of umbralisib + ublituximab ("U2") + pembrolizumab was well tolerated
 - Immune mediated toxicities were not increased above what would be expected with either umbralisib or pembrolizumab alone
- Responses were durable in BTK refractory, high-risk pts, including two durable CRs in RT pts
 - Data suggest that CLL pts who achieve less than CR with a checkpoint inhibitor-containing regimen can achieve durable remissions and that time-limited schedules should be explored
- Maintenance of T-regs throughout therapy may explain limited autoimmune sequelae
- Enrollment is ongoing in both the CLL (BTK refractory only) and RT cohorts
 - Protocol amendment underway to replace pembro with novel anti-PD-L1 (TG-1501)

Questions & Answer Session

Concluding Remarks

Michael S. Weiss Chief Executive Officer, TG

